• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

红螯螯虾不同血细胞亚群的比较转录组学分析

李敬, 张翼翎, 杨丰, 李钫

李敬,张翼翎,杨丰,等. 红螯螯虾不同血细胞亚群的比较转录组学分析[J]. 福建农业学报,2025,40(2) :1−11.
引用本文: 李敬,张翼翎,杨丰,等. 红螯螯虾不同血细胞亚群的比较转录组学分析[J]. 福建农业学报,2025,40(2) :1−11.
LI J,ZHANG Y L,YANG F,et al. Transcriptomics of Hemocyte Subpopulations in Cherax quadricarinatus[J]. Fujian Journal of Agricultural Sciences,2025,40(2) :1−11.
Citation: LI J,ZHANG Y L,YANG F,et al. Transcriptomics of Hemocyte Subpopulations in Cherax quadricarinatus[J]. Fujian Journal of Agricultural Sciences,2025,40(2) :1−11.

红螯螯虾不同血细胞亚群的比较转录组学分析

基金项目: 国家虾蟹产业技术体系建设专项 (CARS-48)
详细信息
    作者简介:

    李敬(1995 —),男,硕士,主要从事经济甲壳动物病原与免疫,E-mail:840878782@qq.com

    通讯作者:

    李钫(1977 —),女,博士,研究员,主要从事经济甲壳动物病原与免疫,E-mail:lifang@tio.org.cn

  • 中图分类号: S917.4

Transcriptomics of Hemocyte Subpopulations in Cherax quadricarinatus

  • 摘要:
    目的 

    半颗粒细胞(semigranular cell, SGC)和颗粒细胞(granular cell, GC)是螯虾循环血细胞的两大主要类群,它们代表了处于不同发育阶段的具有免疫功能的血细胞。了解SGC和GC的功能,可为深入研究甲壳动物血细胞亚群提供基础数据。

    方法 

    以红螯螯虾(Cherax quadricarinatus)为试验对象,运用Percoll不连续密度梯度离心法分离纯化SGC和GC;然后对SGC和GC进行转录组测序,并进行差异分析、GO富集分析以及KEGG富集分析,以探究他们在功能上的差异;最后用实时定量RT-PCR对部分差异基因的表达进行验证。

    结果 

    测序获得了红螯螯虾血细胞的非冗余唯一基因(unigene)共116199个。这些unigenes的平均长度为763 bp,N50为1313 bp。经对比共发现了4488个差异表达基因(differentially expressed genes, DEGs),其中3951个基因在SGC中高度表达,537个基因在GC中高度表达。GO富集分析结果显示:在细胞组分类别中,SGC共富集到7个条目,GC共富集到10个条目;在分子功能类别中,SGC共富集到31个条目,GC共富集到60个条目;在生物过程类别中,SGC共富集到154个条目,GC共富集到102个条目。KEGG富集分析结果显示,SGC共富集到44条通路,GC共富集到10条通路。

    结论 

    在SGC中高度表达的DEGs主要与细胞增殖、分化、基因表达调控、酶产生、内吞作用和细胞黏附有关;在GC中高度表达的DEGs主要与跨膜转运、代谢、酚氧化酶系统、吞噬作用和抗菌肽的产生有关。

    Abstract:
    Objective 

    Transcriptomics of the two primary subpopulations of circulating hemocytes representing the distinct stages of immune cell differentiation in crayfish, semi-granular cell (SGC) and granular cell (GC), was studied.

    Methods 

    SGC and GC in Cherax quadricarinatus were isolated and purified by means of Percoll discontinuous density gradient centrifugation. Transcriptome sequencing and analyses of differential expression, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) enrichment on them were conducted. RT-qPCR was employed to validate the expressions of the differentially expressed genes (DEGs).

    Results 

    The sequencing identified 116199 unigenes in the C. quadricarinatus hemocytes with an average length of 763 bp and an N50 of 1313 bp. The 4488 DEGs included 3951 significantly upregulated in SGC and 537 in GC. On cellular components, there were 7 GO enrichment bands in SGC and 10 in GC; on molecular functions, 31 in SGC and 60 in GC; and on biological processes, 154 in SGC and 102 in GC. The KEGG analysis found 44 pathways enriched in SGC and 10 in GC.

    Conclusion 

    The DEGs enriched in SGC primarily involved in cellular proliferation, differentiation, transcriptional regulation, enzyme synthesis, endocytosis, and adhesion processes. Whereas those enriched in GC were basically associated with the transmembrane transport, metabolic pathways, prophenoloxidase system, phagocytosis, and antimicrobial peptide synthesis.

  • 【研究意义】木瓜秀粉蚧Paracoccus marginatus Williams and Granara de Willink,又称木瓜粉蚧,是一种重要的世界性检疫性害虫。1955年在墨西哥采集到木瓜秀粉蚧第一批标本,1992年才被描述并发表为新种[1]。自1995年在圣马丁报道危害后,迅速扩散至北美洲、非洲、亚洲等60个国家或地区[2-4],截至2018年末,全球分布点达到235个[5]。在中国,该虫于2010年在台湾省首次被发现[6],2013年在云南省发现该虫[7-8],2014年于广东省截获木瓜秀粉蚧[8],海南省于2016年报道该虫危害,并分析了其适生性及空间分布型[9]。木瓜秀粉蚧主要以若虫和雌成虫刺吸寄主植物的茎干、叶、花和果实等器官组织的汁液,导致叶片卷缩畸形、落叶落果,同时易诱发煤污病,严重影响果实产量和品质[10-12],在美国、印度、斯里兰卡、泰国、菲律宾等国家和地区对农业和园艺作物造成了严重破坏和巨大经济损失[13-16]。【前人研究进展】目前,国外关于木瓜秀粉蚧的药剂防治有一些报道,200 g·L−1吡虫啉可溶性液剂、25%噻虫嗪水分散粒剂和矿物油作为木瓜秀粉蚧的直接防治药剂,可减轻粉蚧对寄主植物的危害[14];85%甲萘威可溶性粉剂和40%乐果乳油对木瓜粉蚧有显著的致死率,2.5%溴氰菊酯乳油和2%印楝油对其有一定的控制作用[17];SENI等生物测定和田间试验表明,20%毒死蜱乳油、25%噻虫嗪水分散粒剂和25%噻嗪酮悬浮剂是防治木瓜秀粉蚧最有效的杀虫剂[18-19]。但是,国内关于木瓜秀粉蚧的报道较少,仅杨石有等[20]研究了五种喷雾助剂对240 g·L−1螺螨酯悬浮剂和15%哒螨灵乳油防治木瓜秀粉蚧具有显著的增效作用。【本研究切入点】害虫一旦爆发,生物防治是不足以抑制种群[21]。木瓜秀粉蚧繁殖能力强,在适宜的条件下,极短的时间内可以迅速繁殖,化学防治则是在短时间内控制粉蚧种群的必要措施。但是,由于地区和寄主植物的差异,同种药剂的防治效果往往不同,而且药剂对木瓜秀粉蚧不同虫态的防治效果也尚未明确。【拟解决的关键问题】因此,为了明确哪些药剂对福建省新入侵害虫木瓜秀粉蚧的成虫和若虫具有高敏感性,本研究选用生产上常用的15种杀虫剂,对木瓜秀粉蚧进行了毒力测定。研究结果为科学合理地使用药剂防治新入侵害虫木瓜秀粉蚧,以及制定科学有效地应急防控措施提供科学参考。

    木瓜秀粉蚧P. marginatus采自福建农林大学校园周边木瓜植株上,用马铃薯苗饲养于福建省农业科学院植物保护研究所南通基地人工气候室(温度26±1℃,相对湿度75%±5%,光周期LD=1410)。

    供试药剂及生产厂家见表1

    表  1  供试药剂及生产厂家
    Table  1.  Tested pesticides and their manufacturers
    序号
    No.
    药剂名称  
    Pesticides  
    生产厂家
    Manufacturers
    1 350 g·L−1吡虫啉悬浮剂
    350 g·L−1 imidacloprid SC
    江苏龙灯化学有限公司
    Jiangsu Rotam Chemistry Co., Ltd.
    2 5%啶虫脒乳油
    5% acetamiprid EC
    江苏龙灯化学有限公司
    Jiangsu Rotam Chemistry Co., Ltd.
    3 20%呋虫胺可溶粒剂
    20% dinotefuran SG
    日本三井化学
    AGRO株式会社
    Mitsui Chemicals, Inc.
    4 15%哒螨灵水乳剂
    15% pyridaben EW
    海南正业中农高科股份有限公司
    Hainan Zhongzheng High Technology Co., Ltd.
    5 10%虫螨腈悬浮剂
    10% chlorfenapyr SC
    巴斯夫植物保护(江苏)有限公司
    Basf(China)Co., Ltd.
    6 15%唑虫酰胺悬浮剂
    15% tolfenpyrad SC
    福建省德盛农药有限公司
    Fujian Desheng Pesticide Co., Ltd.
    7 4.5%高效氯氰菊酯乳油
    4.5%beta-cypermethrin EC
    河北威远生物化工有限公司
    Hebei Veyong Bio-chemical Co., Ltd.
    8 25 g·L−1高效氯氟氰菊酯乳油
    25 g·L−1 lambda-cyhalothrin EC
    先正达南通作物保护有限公司
    Syngenta Nantong Crop Protection Co., Ltd.
    9 25 g·L−1溴氰菊酯乳油
    25 g·L−1 deltamethrin EC
    拜耳作物科学(中国)有限公司
    Bayer CropScience(China)Co., Ltd.
    10 22.4%螺虫乙酯悬浮剂
    22.4% spirotetramat SC
    拜耳作物科学(中国)有限公司
    Bayer CropScience(China)Co., Ltd.
    11 240 g·L−1螺螨酯悬浮剂
    240 g·L−1 spirodiclofen SC
    拜耳作物科学(中国)有限公司
    Bayer CropScience(China)Co., Ltd.
    12 22%氟啶虫胺腈悬浮剂
    22% sulfoxaflor SC
    陶氏益农(中国)有限公司
    Dow Agrosciences China Co., Ltd.
    13 60 g·L−1乙基多杀菌素悬浮剂
    60 g·L−1 spinetoram SC
    陶氏益农(中国)有限公司
    Dow Agrosciences China Co., Ltd.
    14 200 g·L−1氯虫苯甲酰胺悬浮剂
    200 g·L−1 chlorantraniliprole SC
    陶氏益农(中国)有限公司
    Dow Agrosciences China Co., Ltd.
    15 25%噻虫嗪水分散粒剂
    25% thiamethoxam WG
    北京华戎生物激素厂
    Beijing Huarong Biological Hormone Plant Co., Ltd.
    下载: 导出CSV 
    | 显示表格

    采用浸渍法[22]测定杀虫剂毒力,选用2龄若虫进行预实验。将供试药剂分别配制成1 000 mg·L−1的药液,以清水作为对照。将马铃薯叶上的非2龄若虫挑走,每片叶子保留30头左右2龄若虫。将带有木瓜秀粉蚧2龄若虫的马铃薯叶片分别浸入不同浓度的药液中15 s,取出置于滤纸上吸去多余药液并自然晾干,后将上述叶片放置于用琼脂保湿的培养皿中,置于(26±1)℃,相对湿度(75±5)%,LD=1410的人工气候箱中饲养。每处理3次重复。于48 h后记录木瓜秀粉蚧的死亡情况。

    经过预试验,筛选出低剂量杀虫剂对木瓜秀粉蚧表现出较高死亡率的杀虫剂种类,然后分别对木瓜秀粉蚧2龄和雌成虫进行毒力测定。不同药剂配制相应的浓度药液,采用1.3.1处理方法,于48 h后记录木瓜秀粉蚧的死亡情况。

    采用DPS v7.05 软件对数据进行统计分析,计算LC50值、95%置信限、卡方值和自由度,分析不同龄期木瓜秀粉蚧对不同药剂的敏感性。

    15种杀虫剂对木瓜秀粉蚧的初步筛选结果如图1所示。不同供试药剂对木瓜秀粉蚧2龄若虫的杀虫活性有较大差异,且部分杀虫剂的敏感性很低。其中,10%虫螨腈悬浮剂、25 g·L−1高效氯氟氰菊酯乳油、4.5%高效氯氰菊酯乳油和15%哒螨灵水乳剂的毒力水平最强,药剂浓度为1 000 g·L−1时,48 h后,对木瓜秀粉蚧2龄若虫的致死率均为100%;15%唑虫酰胺悬浮剂的毒力次之,药剂浓度为1 000 g·L−1时,48 h后,对木瓜秀粉蚧2龄若虫的校正死亡率达80%;其他10种药剂对木瓜秀粉蚧的毒力较低。

    图  1  15种杀虫剂对木瓜秀粉蚧毒力的初步筛选
    Figure  1.  Preliminary screening on toxicities of 15 insecticides on P. marginatus

    木瓜秀粉蚧对5种杀虫剂的敏感性见表23。木瓜秀粉蚧对5种杀虫剂的敏感性依次为:25 g·L−1高效氯氟氰菊酯乳油>10%虫螨腈悬浮剂>4.5%高效氯氰菊酯乳油>15%哒螨灵水乳剂>15%唑虫酰胺悬浮剂。25 g·L−1高效氯氟氰菊酯乳油对木瓜秀粉蚧的致死中浓度(LC50)最小,表明木瓜秀粉蚧对25 g·L−1高效氯氟氰菊酯乳油最敏感,2龄若虫和雌成虫的LC50分别为0.243 0 mg·L−1和0.782 1 mg·L−1;其次为10%虫螨腈悬浮剂、4.5%高效氯氰菊酯乳油和15%哒螨灵水乳剂,15%唑虫酰胺悬浮剂的LC50值最大,2龄若虫和雌成虫的LC50分别为120.3 mg·L−1和173.5 mg·L−1。同时,木瓜秀粉蚧2龄若虫对药剂的敏感性较高,成虫对药剂的敏感性明显高于2龄若虫。

    表  2  木瓜秀粉蚧2龄若虫对5种杀虫剂的敏感性
    Table  2.  Pesticide sensitivities of 2nd-instar P. marginatus nymphs to 5 insecticides
    药剂
    Pesticides
    试虫数
    Number of insect
    致死中浓度
    LC50/(mg·L−1)
    95%置信限
    95% Confidence interval
    斜率±标准误
    Slope±SE
    卡方(自由度)
    χ2(df)
    25 g·L−1高效氯氟氰菊酯乳油
    25 g·L−1 lambda-cyhalothrin EC
    4890.243 00.142 4~0.402 60.58±0.070.54(3)
    10%虫螨腈悬浮剂
    10% chlorfenapyr SC
    90011.6410.09~13.341.63±0.1111.87(4)
    4.5%高效氯氰菊酯乳油
    4.5% beta-cypermethrin EC
    72941.7328.25~75.260.79±0.122.40(4)
    15%哒螨灵水乳剂
    15% pyridaben EW
    82244.9535.45~55.181.29±0.117.40(5)
    15%唑虫酰胺悬浮剂
    15% tolfenpyrad SC
    874120.385.65~170.60.71±0.101.84(4)
    下载: 导出CSV 
    | 显示表格
    表  3  木瓜秀粉蚧雌成虫对5种杀虫剂的敏感性
    Table  3.  Pesticide sensitivities of female P. marginatus adults to 5 insecticides
    药剂
    Pesticides
    试虫数
    Number of insects
    致死中浓度
    LC50/(mg·L−1)
    95%置信限
    95% Confidence interval
    斜率±标准误
    Slope±SE
    卡方(自由度)
    χ2(df)
    25 g·L−1高效氯氟氰菊酯乳油
    25 g·L−1 lambda-cyhalothrin EC
    6140.782 10.511 4~1.214 30.64±0.061.68(4)
    10%虫螨腈悬浮剂
    10% chlorfenapyr SC
    75124.8320.67~30.111.35±0.109.10(5)
    4.5%高效氯氰菊酯乳油
    4.5% beta-cypermethrin EC
    79257.7739.40~103.20.96±0.132.45(4)
    15%哒螨灵水乳剂
    15% pyridaben EW
    92167.7054.31~83.631.03±0.084.29(5)
    15%唑虫酰胺悬浮剂
    15% tolfenpyrad SC
    814173.5129.2~247.20.83±0.111.08(4)
    下载: 导出CSV 
    | 显示表格

    为防止木瓜秀粉蚧在福建省乃至全国的进一步扩散蔓延,一旦发现其危害,必须采取迅速有效的防治方法加以控制,化学防治应是目前防治效果最快的方法。本研究针对新入侵害虫木瓜秀粉蚧,从生产上常用的15种药剂中筛选出对其具有较强毒力的药剂5种,分别为25 g·L−1高效氯氟氰菊酯乳油、10%虫螨腈悬浮剂、4.5%高效氯氰菊酯乳油、15%唑虫酰胺悬浮剂和15%哒螨灵水乳剂。其中以25 g·L−1高效氯氟氰菊酯乳油敏感性最高,田间使用可优先选择此药。另外,木瓜秀粉蚧为刺吸式口器昆虫,可选用具有一定内吸作用的10%虫螨腈悬浮剂与25 g·L−1高效氯氟氰菊酯乳油轮换使用。同时,因为粉蚧虫体表面覆盖有一层厚厚的粉状蜡质物,药剂很难穿透进入体内到达靶标部位,则可借助具有良好渗透作用的助剂来提高农药药效和降低农药用量[20]

    害虫对药剂的敏感性会随其龄期的增长而下降,双委夜蛾Athetis dissimilis 3龄及4龄幼虫对毒死蜱、高效氯氰菊酯、氟啶脲、茚虫威和虫螨腈敏感性较高,而5龄和6龄幼虫对上述药剂的敏感性均降低[23],甜菜夜蛾Spodoptera exigua 的1龄幼虫对甲氨基阿维菌素苯甲酸盐和毒死蜱的相对毒力指数分别是5龄幼虫的83.55和15.50倍[24]。本研究发现,随着木瓜秀粉蚧龄期的增长,其对药剂的敏感性也呈现降低的趋势。因此,在施用化学农药防治木瓜秀粉蚧时,应根据其发生时期和发育阶段合理选择药剂和施药剂量,以进行有效控制。

    福建省是木瓜秀粉蚧的适生区,局部地区是高适生区[5, 25]。2017年笔者研究团队在福建福州市和漳州市木瓜上均发现木瓜秀粉蚧的危害[26],2018年发现木瓜秀粉蚧在厦门危害木瓜、木薯等[5],2019年笔者研究团队在福州发现其危害马铃薯、红薯;同时,木瓜秀粉蚧寄主范围较广,目前已有记载危害64科264种[27-28],其中福建盛产的木瓜、芒果、番荔枝、香蕉、番石榴、薯类作物等也是其主要寄主,这对福建省农业生产造成了潜在威胁。本研究筛选出的5种药剂对木瓜秀粉蚧杀虫活性较高,具有很好的应用潜能,可以为福建省该虫的防治提供一定的参考基础。但是,本次试验是在室内进行,与田间试验的实际生产环境相比具有一定的局限性,试验结果只能作为田间防治的参考药剂,笔者研究团队也进一步将开展药剂田间试验,为更科学合理地使用化学药剂防治新入侵害虫木瓜秀粉蚧提供依据。

  • 图  1   红螯螯虾SGC和GC的主成分分析和DEGs表达热图

    A:红螯螯虾血细胞亚群(SGC和GC)主成分分析;B:基因表达热图分析。

    Figure  1.   PCA and DEG expression heat map of C. quadricarinatus SGC and GC

    A: PCA on hemocyte subpopulations, SGC and GC; B: gene expression heatmap.

    图  2   SGC或GC特异性高表达基因的GO富集分析(细胞组分)

    Figure  2.   GO enrichment of SGC or GC up-regulated genes(cellular component)

    图  3   SGC或GC特异性高表达基因的GO富集分析(分子功能)

    仅展示部分P值显著、富集基因数量多的条目。图45同。

    Figure  3.   GO enriched bands of up-regulated genes in SGC and GC (on molecular functions)

    Only representative bands with minimal P-values and maximum enriched gene counts are shown. Same for Fig.4, 5.

    图  4   SGC或GC特异性高表达基因的GO富集分析(生物过程)

    Figure  4.   GO enriched bands of up-regulated genes in SGC and GC (on biological processes)

    图  5   SGC或GC特异性高表达基因的KEGG富集分析

    Figure  5.   KEGG enriched bands of up-regulated genes in SGC and GC

    图  6   6个基因mRNA表达水平的实时定量RT-PCR结果

    *、**、***分别表示不同血细胞PCR相对表达量在0.05、0.01、0.001水平差异显著。

    Figure  6.   RT-qPCR results showing mRNA expressions of 6 genes

    *, **, *** indicate significant differences of PCR relative express between SGC and GC at 0.05, 0.01, 0.001 level, respectively.

    表  1   实时定量RT-PCR中使用的引物序列

    Table  1   Sequences of primers for RT-qPCR

    基因ID 注释Annotation 引物序列(5′-3′)
    Primer sequence(5′-3′)
    Unigene0075897 c型溶菌酶 F:GTTAGCGTGCTCGTGGTTG
    R:TCCCGTAGACTTTTGCCG
    Unigene0027599 半乳糖特异性凝集素 F:ATTGGTGGGGCTGGAAGA
    R:TTTGAGTGTGATTGAGCAGAAGTA
    Unigene0049690 造血因子2a F:TAACCTTCACTACCCCAACAAT
    R:ACCAGTCCAGCTCCGCA
    Unigene0022931 酚氧化酶原激活因子3 F:GGGTTGATAATGCTTCCTTC
    R:TGCTTGTCTGGTCACTGGT
    Unigene0112798 造血因子变种3 F:CCAGTTGGCTGCCTCACA
    R:GACCACGACCGACTTTGC
    Unigene0006621 甲壳素1 F:TACAACACACTCGCAGCATCT
    R:GCAGTCTGGGGGGAACC
    内参基因 Internal reference gene β-肌动蛋白 F:ATTACCATCCAGGCTGTGCT
    R:GGGCGAAACCTTCATACACG
    下载: 导出CSV

    表  2   基于FPKM值的两个血细胞亚群差异表达基因

    Table  2   DEGs between SGC and GC based on FPKM value

    基因ID 平均表达量 FPKM 注释 Annotation
    SGCs GCs
    Unigene0005146 5568.05 66.81 HPT因子9 HPT factor 9 [通讯鳌虾 Pacifastacus leniusculus]
    Unigene0034901 3514.74 50.20 NOTCH同源蛋白1 Predicted neurogenic locus notch homolog protein 1-like [美洲钩虾 Hyalella Azteca]
    Unigene0070406 3468.68 36.63 转谷氨酰胺酶 Transglutaminase [通讯鳌虾 Pacifastacus leniusculus]
    Unigene0043100 2227.69 43.31 钙蛋白酶B Calpain B [侧身地蟹 Gecarcinus lateralis]
    Unigene0081651 1817.96 32.81 半乳糖特异性凝集素(galactose-specific lectin nattectin-like protein, partial)[克氏原螯虾 Procambarus clarkii]
    Unigene0044871 1604.99 15.45 伸展蛋白结构域 Extensin-like [中国地鼠 Cricetulus griseus]
    Unigene0025602 986.96 12.41 锌指蛋白544样亚型X3 Zinc finger protein 544-like isoform X3 [双条吻蚓 Rhinatrema bivittatum]
    Unigene0049690 246.33 28.40 造血因子2a Astakine 2a [通讯螯虾 Pacifastacus leniusculus]
    Unigene0006621 1295.81 12639.05 甲壳素1 Crustin 1 [克氏原螯虾 Procambarus clarkii]
    Unigene0085460 1806.77 6228.55 酚氧化酶原 Prophenoloxidase [红螯螯虾 Cherax quadricarinatus]
    Unigene0106531 1065.41 3376.95 甲壳素2 Crustin 2 [红螯螯虾 Cherax quadricarinatus]
    Unigene0045189 265.39 2496.35 甘露糖结合蛋白 Mannose-binding protein [通讯螯虾 Pacifastacus leniusculus]
    Unigene0112798 53.04 1839.86 造血因子变种3 Astakine variant 3 [斑节对虾 Penaeus monodon]
    Unigene0013166 27.08 1283.46 细胞黏附蛋白 Peroxinectin [克氏原螯虾 Procambarus clarkii]
    下载: 导出CSV
  • [1]

    ROWLEY A F. The immune system of crustaceans[J]. Encyclopedia of Immunobiology,2016(1) :437−453.

    [2]

    SöDERHäLL K. Invertebrate Immunity[M]. Boston,MA :Landes Bioscience and Springer Science and Business Media,LLC,2010:239–259.

    [3]

    LIN X H,SÖDERHÄLL I. Crustacean hematopoiesis and the astakine cytokines[J]. Blood,2011,117(24) :6417−6424. DOI: 10.1182/blood-2010-11-320614

    [4]

    VAN DE BRAAK C B T,BOTTERBLOM M H A,LIU W,et al. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon) [J]. Fish & Shellfish Immunology,2002,12(3) :253−272.

    [5]

    HOSE J E,MARTIN G G,GERARD A S. A decapod hemocyte classification scheme integrating morphology,cytochemistry,and function[J]. The Biological Bulletin,1990,178(1) :33−45. DOI: 10.2307/1541535

    [6]

    LI F,ZHENG Z C,LI H Y,et al. Crayfish hemocytes develop along the granular cell lineage[J]. Scientific Reports,2021,11(1) :13099. DOI: 10.1038/s41598-021-92473-9

    [7] 姚翠鸾,王志勇,相建海. 甲壳动物血细胞及其在免疫防御中的功能[J]. 动物学研究,2006,27(5) :549−557. DOI: 10.3321/j.issn:0254-5853.2006.05.014

    YAO C L,WANG Z Y,XIANG J H. Crustacean haemocytes and their function in immune responses[J]. Zoological Research,2006,27(5) :549−557. (in Chinese) DOI: 10.3321/j.issn:0254-5853.2006.05.014

    [8]

    PERSSON M,VEY A,SDERHLL K. Encapsulation of foreign particles in vitro by separated blood cells from crayfish,Astacus leptodactylus[J]. 1987,247(2) :409–415.

    [9] 陈琪,康翠洁. 虾类血细胞的分类与功能研究进展[J]. 生物工程学报,2021,37(1) :53−66.

    CHEN Q,KANG C J. Advancements in the study of the classification and immune function of shrimp hemocytes[J]. Chinese Journal of Biotechnology,2021,37(1) :53−66. (in Chinese)

    [10]

    SRICHAROEN S,KIM J J,TUNKIJJANUKIJ S,et al. Exocytosis and proteomic analysis of the vesicle content of granular hemocytes from a crayfish[J]. Developmental & Comparative Immunology,2005,29(12) :1017−1031.

    [11]

    LI F,CHANG X F,XU L M,et al. Different roles of crayfish hemocytes in the uptake of foreign particles[J]. Fish & Shellfish Immunology,2018,77:112−119.

    [12]

    WEI C,PAN L Q,ZHANG X,et al. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine[J]. Fish & Shellfish Immunology,2019,94:497−509.

    [13]

    HE Z H,ZHAO J C,CHEN X Y,et al. The molecular mechanism of hemocyte immune response in Marsupenaeus japonicus infected with decapod iridescent virus 1[J]. Frontiers in Microbiology,2021,12:710845. DOI: 10.3389/fmicb.2021.710845

    [14]

    CHENG C H,MA H L,DENG Y Q,et al. Effects of Vibrio parahaemolyticus infection on physiological response,histopathology and transcriptome changes in the mud crab (Scylla paramamosain) [J]. Fish & Shellfish Immunology,2020,106:197−204.

    [15]

    CHEN D F,LU L,PEI Q L,et al. Transcriptome analysis of the immunomodulatory effects of Salvia miltiorrhiza polysaccharide on hemocyte immune response in Procambarus clarkii[J]. Fish & Shellfish Immunology,2022,131:697−706.

    [16]

    LIAO X Z,WANG C G,WANG B,et al. Research into the hemocyte immune response of Fenneropenaeus merguiensis under decapod iridescent virus 1 (DIV1) challenge using transcriptome analysis[J]. Fish & Shellfish Immunology,2020,104:8−17.

    [17] 傅一鸣,李智,柳峰松,等. 微囊藻毒素MC-LR对凡纳滨对虾细胞免疫相关基因表达水平的影响[J]. 上海海洋大学学报,2015,24(2) :196−202.

    FU Y M,LI Z,LIU F S,et al. The toxicity impact of microcystin on expression of cellular immune-related genes in Litopenaeus vannamei[J]. Journal of Shanghai Ocean University,2015,24(2) :196−202. (in Chinese)

    [18] 傅蓉蓉,李钫,杨丰. Percoll不连续密度梯度离心法分离红螯光壳螯虾血细胞[J]. 水产学报,2019,43(4) :841−851.

    FU R R,LI F,YANG F. Separation of hemocytes of Cherax quadricarinatus by Percoll discontinuous density gradient centrifugation[J]. Journal of Fisheries of China,2019,43(4) :841−851. (in Chinese)

    [19]

    GRABHERR M G,HAAS B J,YASSOUR M,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011,29(7) :644−652. DOI: 10.1038/nbt.1883

    [20]

    LI B,DEWEY C N. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323. DOI: 10.1186/1471-2105-12-323

    [21]

    MORTAZAVI A,WILLIAMS B A,MCCUE K,et al. Mapping and quantifying mammalian transcriptomes by RNA-seq[J]. Nature Methods,2008,5(7) :621−628. DOI: 10.1038/nmeth.1226

    [22]

    LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T) ) Method[J]. Methods,2001,25(4) :402−408. DOI: 10.1006/meth.2001.1262

    [23]

    SIMÃO F A,WATERHOUSE R M,IOANNIDIS P,et al. BUSCO:Assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics,2015,31(19) :3210−3212. DOI: 10.1093/bioinformatics/btv351

    [24]

    HALL M,WANG R,VAN ANTWERPEN R,et al. The crayfish plasma clotting protein:A vitellogenin-related protein responsible for clot formation in crustacean blood[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(5) :1965−1970.

    [25]

    MANINGAS M B B,KONDO H,HIRONO I,et al. Essential function of transglutaminase and clotting protein in shrimp immunity[J]. Molecular Immunology,2008,45(5) :1269−1275. DOI: 10.1016/j.molimm.2007.09.016

    [26]

    LIN X H,SÖDERHÄLL K,SÖDERHÄLL I. Transglutaminase activity in the hematopoietic tissue of a crustacean,Pacifastacus leniusculus,importance in hemocyte homeostasis[J]. BMC Immunology,2008,9:58. DOI: 10.1186/1471-2172-9-58

    [27]

    LOPES-FERREIRA M,MAGALHÃES G S,FERNANDEZ J H,et al. Structural and biological characterization of Nattectin,a new C-type lectin from the venomous fish Thalassophryne nattereri[J]. Biochimie,2011,93(6) :971−980. DOI: 10.1016/j.biochi.2011.03.001

    [28]

    JIANG H S,JIA W M,ZHAO X F,et al. Four crustins involved in antibacterial responses in Marsupenaeus japonicus[J]. Fish & Shellfish Immunology,2015,43(2) :387−395.

    [29]

    SÁNCHEZ-SALGADO J L,PEREYRA M A,ALPUCHE-OSORNO J J,et al. Pattern recognition receptors in the crustacean immune response against bacterial infections[J]. Aquaculture,2021,532:735998. DOI: 10.1016/j.aquaculture.2020.735998

    [30]

    HOLMBLAD T,SÖDERHÄLL K. Cell adhesion molecules and antioxidative enzymes in a crustacean,possible role in immunity[J]. Aquaculture,1999,172(1/2) :111−123.

    [31]

    LV S J,LU B J,XU J H,et al. Immune response of peroxinectin of Chinese mitten crab Eriocheir sinensis to exterior stimulation[J]. Developmental & Comparative Immunology,2015,51(1) :56−64.

    [32]

    SUN M Z,LI S H,ZHANG X J,et al. Isolation and transcriptome analysis of three subpopulations of shrimp hemocytes reveals the underlying mechanism of their immune functions[J]. Developmental & Comparative Immunology,2020,108:103689.

    [33]

    SÖDERHÄLL I,JUNKUNLO K. A comparative global proteomic analysis of the hematopoietic lineages in the crustacean Pacifastacus leniusculus[J]. Developmental & Comparative Immunology,2019,92:170−178.

    [34]

    MIYAZAWA K,MIYAZONO K. Regulation of TGF-β family signaling by inhibitory smads[J]. Cold Spring Harbor Perspectives in Biology,2017,9(3) :a022095. DOI: 10.1101/cshperspect.a022095

    [35]

    ZHAO M,MISHRA L,DENG C X. The role of TGF-β/SMAD4 signaling in cancer[J]. International Journal of Biological Sciences,2018,14(2) :111−123. DOI: 10.7150/ijbs.23230

    [36]

    LAI L Y S,GRACIE N P,GOWRIPALAN A,et al. SMAD proteins:Mediators of diverse outcomes during infection[J]. European Journal of Cell Biology,2022,101(2) :151204. DOI: 10.1016/j.ejcb.2022.151204

    [37]

    KOIWAI K,KOYAMA T,TSUDA S,et al. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process[J]. eLife,2021,10:e66954. DOI: 10.7554/eLife.66954

    [38]

    CUI C,TANG X Q,XING J,et al. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei[J]. Frontiers in Immunology,2022,13:980021. DOI: 10.3389/fimmu.2022.980021

    [39]

    CERENIUS L,LEE B L,SÖDERHÄLL K. The proPO-system:Pros and cons for its role in invertebrate immunity[J]. Trends in Immunology,2008,29(6) :263−271. DOI: 10.1016/j.it.2008.02.009

    [40]

    WEISS H J,ANGIARI S. Metabolite transporters as regulators of immunity[J]. Metabolites,2020,10(10) :418. DOI: 10.3390/metabo10100418

    [41]

    DUAN H,JIN S J,ZHANG Y,et al. Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads,E. coli and WSSV,but in different ways[J]. Developmental & Comparative Immunology,2014,46(2) :186−193.

    [42]

    LIU S,ZHENG S C,LI Y L,et al. Hemocyte-mediated phagocytosis in crustaceans[J]. Frontiers in Immunology,2020,11:268.

    [43]

    BENTON J L,KERY R,LI J J,et al. Cells from the immune system generate adult-born neurons in crayfish[J]. Developmental Cell,2014,30(3) :322−333. DOI: 10.1016/j.devcel.2014.06.016

    [44]

    BELTZ B S,BRENNEIS G,BENTON J L. Adult neurogenesis:Lessons from crayfish and the elephant in the room[J]. Brain,Behavior and Evolution,2016,87(3) :146−155.

    [45]

    BELTZ B S,BENTON J L. From blood to brain:Adult-born neurons in the crayfish brain are the progeny of cells generated by the immune system[J]. Frontiers in Neuroscience,2017,11:662.

    [46]

    CHAVES DA SILVA P G,BENTON J L,SANDEMAN D C,et al. Adult neurogenesis in the crayfish brain:The hematopoietic anterior proliferation center has direct access to the brain and stem cell niche[J]. Stem Cells and Development,2013,22(7) :1027−1041.

    [47]

    NOONIN C,LIN X H,JIRAVANICHPAISAL P,et al. Invertebrate hematopoiesis:An anterior proliferation center as a link between the hematopoietic tissue and the brain[J]. Stem Cells and Development,2012,21(17) :3173−3186.

  • 期刊类型引用(6)

    1. 史梦竹,李建宇,方灵,梁启富,韦航,司瑞茹,傅建炜. 高效氯氟氰菊酯在番木瓜中的残留行为及膳食风险评估. 农产品质量与安全. 2024(01): 9-14 . 百度学术
    2. 吴胜平,黄华毅,赵丹阳,赵奕,胡铭彪,吴锡豪,张心结. 8种杀虫剂对榕透翅毒蛾的室内防效. 林业与环境科学. 2023(01): 96-100 . 百度学术
    3. 李廷玉. 尤溪县柑橘园粉蚧优势种调查及防控药剂筛选. 东南园艺. 2023(05): 340-344 . 百度学术
    4. 陈燕婷,史梦竹,傅建炜,赵紫华,刘万学,李建宇. 气候变化条件下木瓜秀粉蚧在中国的潜在适生区预测. 植物保护学报. 2023(06): 1491-1498 . 百度学术
    5. 胡锦,王小云,张艳军,刘红梅,王慧,张宏斌,郑霞林. 广西首次发现入侵害虫木瓜秀粉蚧. 广西植保. 2022(04): 9-13 . 百度学术
    6. 令狐伟,吕昭智,王玉丽,崔志军,王强,高桂珍. 杏树鬃球蚧防治药剂的筛选及田间防效. 西北林学院学报. 2021(06): 173-180 . 百度学术

    其他类型引用(4)

图(6)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-09-16
  • 修回日期:  2024-12-09
  • 录用日期:  2025-03-16
  • 网络出版日期:  2025-03-16

目录

/

返回文章
返回