Processing math: 100%
  • 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

不同水稻品种、土壤调理剂和叶面阻控剂对镉-铅复合污染稻田的治理效果

邱小文, 张起佳, 吴泽文, 郭腾飞, 黄啸宇, 陈龙照, 詹勇, 赵思睿

邱小文,张起佳,吴泽文,等. 不同水稻品种、土壤调理剂和叶面阻控剂对镉-铅复合污染稻田的治理效果 [J]. 福建农业学报,2024,39(11):1306−1314. DOI: 10.19303/j.issn.1008-0384.2024.11.012
引用本文: 邱小文,张起佳,吴泽文,等. 不同水稻品种、土壤调理剂和叶面阻控剂对镉-铅复合污染稻田的治理效果 [J]. 福建农业学报,2024,39(11):1306−1314. DOI: 10.19303/j.issn.1008-0384.2024.11.012
QIU X W, ZHANG Q J, WU Z W, et al. Rice Varieties, Soil Conditioners, and Foliar Blockers for Remedying Cd-Pb Contamination on Paddy Fields [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1306−1314. DOI: 10.19303/j.issn.1008-0384.2024.11.012
Citation: QIU X W, ZHANG Q J, WU Z W, et al. Rice Varieties, Soil Conditioners, and Foliar Blockers for Remedying Cd-Pb Contamination on Paddy Fields [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1306−1314. DOI: 10.19303/j.issn.1008-0384.2024.11.012

不同水稻品种、土壤调理剂和叶面阻控剂对镉-铅复合污染稻田的治理效果

基金项目: 中国冶金地质总局2023年科研项目(CMGBKY202301);福建省科技计划引导性项目(2022N0024)
详细信息
    作者简介:

    邱小文(1972 —),男,硕士,高级农艺师,主要从事农业生态环境和资源保护、受污染耕地与农业面源污染治理修复研究,E-mail:123249251@qq.com

  • 中图分类号: X53

Rice Varieties, Soil Conditioners, and Foliar Blockers for Remedying Cd-Pb Contamination on Paddy Fields

  • 摘要:
    目的 

    评估不同水稻品种、土壤调理剂和叶面阻控剂对重金属污染土壤的治理效果及对水稻产量和品质的影响。

    方法 

    采用田间试验的方法,试验区选址在福建省龙岩市某县区安全利用耕地镉-铅复合污染大田,其土壤中镉、铅DTPA提取量分别为0.190 mg·kg−1、16.3 mg·kg−1,土壤中全Cd、全Pb含量分别为0.334 mg·kg−1、99.5 mg·kg−1。选用当地常规杂交水稻品种甬优9、甬优1540、甬优17、泰两优美丝、两优1516、喜两优丰丝苗、更香优糖丝、更香优703、中浙优8号、增香丝隆望两优889进行对比试验,比较分析各品种产量及水稻糙米中Cd、Pb含量;比较不同土壤调理剂(牡蛎壳粉、麦饭石粉、屹米达土壤修复剂IM-2、屹米达土壤调理剂IM-3、超稳矿化土壤修复新材料、洋屿土壤结构调理剂)和叶面阻控剂(楚戈、玲珑硅、给力硅、粮安好、液体硅)对土壤中有效态Cd、Pb含量和水稻糙米中Cd、Pb含量的影响;把不同安全利用措施优化组合,探讨其对受污染耕地修复治理的效果与可行性。

    结果 

    不同水稻品种在产量和水稻糙米中Cd、Pb的累积上存在明显差异,其中甬优17产量最高,泰两优美丝产量最低,10种不同水稻品种糙米中Cd、Pb含量均未超出国家标准GB 2762—2022要求(Cd≤0.2 mg·kg−1、Pb≤0.2 mg·kg−1),增香丝隆望两优889、甬优9号、中浙优8号、甬优17等4种水稻品种在产量及对重金属Cd、Pb的低积累上表现出较好效果。不同土壤调理剂能显著提升土壤pH值,除了施用超稳矿化土壤修复新材料处理组出现水稻产量减产外,其他处理则均表现出显著增产效果。施用牡蛎壳粉、麦饭石、屹米达土壤调理剂IM-3、超稳矿化土壤修复新材料等4种土壤调理剂显著降低了土壤中有效态Cd、Pb含量;施用牡蛎壳粉、屹米达土壤调理剂IM-3、洋屿土壤结构调理剂、超稳矿化土壤修复新材料显著降低了水稻糙米中Cd含量,除了洋屿土壤结构调理剂处理组水稻糙米中Pb有检测出,其他处理组均未检出。不同叶面阻控剂在水稻产量上均表现出显著增产效果,均能显著降低水稻糙米中Cd含量,降低比例依次为粮安好>液体硅> 玲珑硅> 楚戈>给力硅;除粮安好处理组水稻糙米中有检测出Pb外,其他处理组水稻中则均未检出。3种综合治理技术模式均能显著降低土壤中有效态Cd、Pb含量,显著降低水稻糙米中Cd含量,水稻糙米中Pb则均未检出。

    结论 

    筛选出增香丝隆望两优889、甬优9号、中浙优8号、甬优17等4种水稻品种作为低积累水稻品种;土壤调理剂推荐使用牡蛎壳粉和屹米达土壤调理剂IM-3,叶面阻控剂推荐使用液体硅和玲珑硅。在镉-铅复合污染稻田上,因地制宜选用上述推荐的低积累水稻品种、土壤调理剂、叶面阻控剂,以“低积累水稻品种+土壤调理剂+叶面阻控剂”的组合作为综合治理技术模式使用,既能保障水稻产量,又能有效降低土壤中有效态Cd、Pb含量,降低水稻糙米中Cd、Pb含量,保障水稻的质量安全。

    Abstract:
    Objective 

    Proper selections of rice varieties, soil conditioners, and foliar blockers to mitigate the ill-affected rice quality and production and soil condition on a Cd-Pb contaminated paddy field were investigated.

    Method 

    In a field experiment, the test area was selected in a Cd-Pb compound polluted field in a county and district of Longyan City, Fujian Province, where the soil Cd and Pb DTPA extractions were 0.190 mg·kg−1, 16.3 mg·kg−1, and the soil total Cd and Pb contents were 0.334 mg·kg−1, 99.5 mg·kg−1, respectively. Conventional hybrid rice varieties, Yongyou 9, Yongyou 1540, Yongyou 17, Tailiangyoumeisi, Liangyou 1516, Xiliangyoufengsimiao, Gengxiangyoutangsi, Gengxiangyou 703, Zhongzheyou 8, and Zengxiangsilongwangliangyou 889, were planted on Cd-Pb contaminated soils treated with various conditioners and sprayed on plant leaves with different foliar blockers. Grain yield and Cd-Pb in the harvested brown rice of each rice variety as well as in the soils under treatments were recorded. The soil conditioners applied included oyster shell powder, medical stone powder, Yimida soil remediation agent IM-2, Yimida soil conditioner IM-3, ultra-stable mineralized soil remediation new material, and Yangyu soil structure conditioner, and the foliar blockers included Chuge, Linglong silicon, Geili silicon, Liang'anhao, liquid silicon. Effectiveness and feasibility of the combined optimal treatments in reversing the ill-effects of the heavy metal contamination on the farmland were examined.

    Result 

    Significant differences on yield and Cd-Pb in brown rice of the varieties of rice grown on the lots were found. For instance, Yongyou 17 had the highest yield and Tailiangyoumeisi the lowest, but the Cd-Pb contents for all 10 rice cultivars were below the national standards GB 2762—2022, 0.2 mg·kg−1 for Cd and 0.2 mg·kg−1 for Pb. Zengxiangsilongwangliangyou 889, Yongyou 9, Zhongzheyou 8, and Yongyou 17 performed well on yield with low Cd-Pb. The soil conditioners, other than the ultra-stable mineralized soil remediation new material, significantly raised the soil pH and grain yield. Among them, the oyster shell powder, medical stone, Yimida soil conditioner IM-3, and the ultra-stable mineralized soil remediation new material significantly lowered the available Cd-Pb in soil; the oyster shell powder, Yimida soil conditioner IM-3, Yangyu soil structure conditioner, and the ultra-stable mineralized soil remediation new material significantly reduced the Cd in brown rice; and, except Yangyu soil structure conditioner, all others helped to render Pb not detectable in the brown rice. The tested foliar blockers sprayed on rice plants significantly improved the grain yield with reduced Cd in brown rice in the order of: Liang'anhao>liquid silicon>Linglong silicon>Chuge>Geili silicon. Aside from Liang'anhao, the foliar blockers also decreased the Pb in brown rice to a non-detectable level. In combination, the three methods tried in this study not only effectively decreased the Cd-Pb contents in brown rice and soil but also significantly enhanced the grain yield.

    Conclusion 

    Zengxiangsilongwangliangyou 889, Yongyou 9, Zhongzheyou 8, and Yongyou 17 were low in accumulating Cd-Pb and high on yield. The oyster shell powder and Yimida soil conditioner IM-3 were the choice soil conditioners. The liquid silicon or Linglong silicon performed satisfactorily as a foliar blocker. By combining the above-recommended selections for a treatment, an effective reduction in soil Cd-Pb, crop increase on rice, and safety assurance for consumption could be realized.

  • 伪狂犬病(Pseudorabies,PR)是由疱疹病毒引起的多种家畜和野生动物以发热、奇痒及脑脊髓炎为主要症状的一种疾病[1],该病主要表现为妊娠母猪流产,木乃伊胎和产弱仔,初生仔猪出现腹泻及神经症状高感染率和高死亡率,公猪睾丸炎等,是严重危害养猪业的主要传染病之一。近年来在集约化、规模化猪场,采用伪狂犬基因缺失疫苗进行猪群伪狂犬病防治,得到有效控制[2-3]。但2011年以来,猪伪狂犬病疫情率先在华北暴发,许多使用基因缺失活疫苗免疫的规模化猪场出现了疑似PR流行[4-8]。福建地区猪场也出现大面积感染PR现象,包括免疫伪狂犬病毒(PRV) gE基因缺失疫苗的规模化猪场,阳性率普遍升高,疫情日趋严重。其临床症状为公猪精液质量下降,部分母猪流产、死胎,仔猪顽固性腹泻,保育猪和育肥猪打喷嚏、咳嗽的呼吸道症状,并于2012年从病死猪中分离到一株新型PRV病毒(命名为PRV-FJ2012)[9]

    PRV弱毒FB株是FA株经鸡胚细胞体外培养500代后,再以选斑和低温诱变相结合在原代乳兔肾(RK)细胞上32℃传180代后选育而成的弱毒株,FB株对易感动物(牛、山羊、小猪)不但安全性好,且具有良好的免疫原性;FB与gE基因缺失的Bartha-K61株相比,对家兔致病力更弱、更安全[10-11]。为了评价PRV弱毒FB株预防新型PRV的潜力,应用微量交叉中和试验(NT)比较了4株伪狂犬病毒(FA、FB、Bartha-K61和FJ2012)之间的抗原相关性,通过免疫攻毒保护试验评价FB株对预防新型PRV的潜力,为进一步研究安全有效的疫苗提供依据。

    PRV FA株[12-13]和FB株[10-14]均由福建省农业科学院畜牧兽医研究所分离鉴定、选育并保存;PRV FJ2012由福建省农业科学院畜牧兽医研究所猪病研究室分离、鉴定并保存[9];兔抗PRV FA、FB、Bartha-K61和FJ2012高免血清由本课题组制备并保存;PRV Bartha-K61株购自中国兽药监察所。

    9日龄SPF鸡胚购自福州大北农生物技术有限公司;12头PRV gB抗体阴性的20日龄仔猪购自福建某健康种猪场;体重2~3 kg雄性新西兰大白兔购自闽侯吴氏实验动物贸易有限公司;羊抗兔酶标二抗购自博士德生物工程有限公司。

    分别将PRVFJ2012、FA、FB和Bartha-K61株病毒,按维持液量的1%接种于单层CEF细胞瓶,置37℃温箱培养,每日观察细胞病变,当病变达75%收冻于-20℃,冻融3次后,收获细胞毒,-70℃保存备用。

    将上述病毒用细胞维持液作10倍系列稀释后,接种于已长成单层CEF 96孔细胞培养板,每一个稀释度接种4孔,每孔接毒量100 μL,并设对照,37℃、6% CO2培养箱培养,每天观察细胞病变情况并记录,一直观察至7 d,出现CPE者判为感染,按Reed-Muench法计算TCID50

    在96孔CEF单层细胞板上按固定病毒-稀释血清法进行中和试验。先将兔抗PRV高免血清(FJ2012ab、FAab、FBab和Bartha-K61ab),经56℃水浴作用30 min后进行2倍比系列稀释,分别取不同稀释度血清与200TCID50等量混合,37℃作用1 h,每个稀释度接种4孔CEF单层细胞,每孔100 μL,同时设正常细胞对照、不同毒株的病毒对照。置37℃、6.0% CO2培养箱培养,每天观察细胞病变情况并记录,连续观察至7 d,按Reed-Muench法分别计算各自高免血清的中和抗体效价(PD50)及其与不同毒株间的交叉中和抗体效价。

    根据公式R=r1r2,计算各病毒株之间的抗原相关性。R为两毒株间抗原性差异,r1为乙血清对甲病毒的抗体效价/甲血清对甲病毒的抗体效价,r2为甲血清对乙病毒的抗体效价/乙血清对乙病毒的抗体效价。当相关系数R>0.8,则两毒株为同一血清型;当相关系数R=0.25~0.80时,两毒株为同一血清型不同亚型;当相关系数R < 0.25,则两毒株为不同血清型;R值越小则病毒株之间抗原性差异越大。

    20日龄PRV gB抗体阴性健康易感仔猪13头随机分成免疫组、对照组和健康组。其中,免疫组5头,每头肌注FB株细胞毒与英特威佐剂1: 1混合液2 mL(免疫剂量为105.5TCID50),对照组5头,每头肌注Hank′s与英特威佐剂1: 1混合液2 mL,健康组3头不注射。各组隔离饲养,并于免疫后20 d,取免疫组和对照组分别攻毒,每头肌注PRV-FJ2012株2 mL(攻毒剂量106.5TCID50),观察30 d记录发病和死亡情况,评价PRV FB株对新型PRV FJ2012株的保护效果。

    病毒按接毒量1%接种于单层CEF细胞瓶后,第2 d出现散在的病灶,即细胞肿胀和圆缩,随后逐渐扩展,直至全部细胞溶解脱落,FA、FJ2012和Bartha-K61毒株均出现大量巨融合细胞病变,而FB毒株的CPE表现为细胞圆缩而无巨融合细胞现象。PRV FJ2012株、FA株、FB株和Bartha-K61株每毫升病毒含量分别为106.5 TCID50、106.25 TCID50、106.0 TCID50和106.75 TCID50

    按固定病毒稀释血清法,测定兔抗FJ2012ab、FAab、FBab和Bartha-K61ab高免血清与同源病毒之间的中和效价分别为26.5(1: 91)、26.5(1: 91)、25.75(1: 54)和27.75(1: 215);高免血清与同源病毒的中和效价均不同程度高于其与异源病毒的中和效价(表 1)。

    表  1  4株PRV交叉中和抗体效价及其抗原相关性R
    Table  1.  VN antibodies and correlation coefficients on antigens of 4 strains of PRV
    病毒株 高免血清* R
    FAab FBab Bartha-K61ab FJ2012ab FA FB Bartha-K61 FJ2012
    FA 6.5 5.5 5.25 6.5 1
    FB 6.25 5.75 5.0 6.5 0.84 1
    Bartha-K61 6.25 5.25 7.75 5.5 0.39 0.32 1
    FJ2012 6.25 5.5 5.5 6.5 0.92 0.92 0.32 1
    *注:表中中和抗体数据为-lg2值。
    下载: 导出CSV 
    | 显示表格

    表 1可知,FA株与FB株、FA株与FJ2012株、FB株与FJ2012株的抗原相关R值分别为0.84、0.92和0.92,即FB株与FA株或FJ2012株之间的抗原相关性大,抗原差异小;Bartha-K61株与FA株、FB株、FJ2012株的抗原相关R值分别为0.39、0.32和0.32,即Bartha-K61株与FA株或FJ2012株在抗原性上存在较大差异;表明弱毒FB株与新型PRV FJ2012株的抗原相关性高于Bartha-K61株与FJ2012株,从抗原性方面提示PRV FB株有望成为预防新型PRV(FJ2012株)的活疫苗候选株。

    40日龄对照组仔猪肌注新型PRV FJ2012株强毒,于PI 24 h对照攻毒猪出现精神沉郁和食欲减少,并逐渐加重,PI 36 h后全部开始出现喘气、流涏、体温达41℃,喘气和发热一直持续12 d,病猪明显消瘦,其间死亡2头,随后缓慢恢复,观察30 d的发病率100%,死亡率40%(表 2)。而20日龄健康易感仔猪免疫PRV FB株毒后20 d进行攻毒,肌注感染新型PRV FJ2012株强毒,免疫猪攻毒后24 h出现一过性精神沉郁和采食量减少但第二天即恢复正常,观察30 d免疫攻毒组均未出现消瘦和死亡,免疫猪的攻毒保护率100%(5/5)(表 2);表明PRV FB株免疫猪能抵抗FJ2012株的攻击,FB株有望成为预防新型PRV的候选疫苗株。

    表  2  仔猪FB株免疫后对新型PRV FJ 2012株的攻毒保护结果
    Table  2.  Viral challenge test of FB on preventing PRV FJ2012 infection
    组别 数量/头 免疫剂量 攻毒日龄/d 攻毒剂量 发病率/% 死亡率/%
    免疫攻毒组 5 105.5TCID50 40 106.5TCID50 0 0
    对照攻毒组 5 0 40 106.5TCID50 100 40
    健康对照组 3 0 40 0 0 0
    下载: 导出CSV 
    | 显示表格

    PRV FB株是由福建省农业科学院畜牧兽医研究所选育致弱而成,FB株接种仔猪既能刺激机体产生中和抗体,又能产生细胞免疫,且免疫后60 d仍维持较高水平[16]。魏振明等[17]以FB株免疫怀孕后期母猪,可使乳猪从初乳中吸收高浓度抗体而获得被动免疫,即FB株对怀孕后期母猪和乳猪均安全有效。以PRV FB免疫130日龄猪,免疫后4d血清中和抗体指数为(1.9 Lg),免疫后21 d形成峰值(3.5 Lg),并且能够通过母乳使仔猪得到被动保护,而Bartha-K61株免疫猪的血清中和抗体低下,却有保护作用,即机体产生细胞免疫,提示PRV FB与Bartha-K61株之间存在免疫生物学的差异[16]

    程由铨等[18]应用单克隆抗体(McAb)对FB和Bartha-K61株的免疫印迹分析发现,McAbl0只识别FB的105 kD多肽,不识别Bartha-K61株的多肽;该结果与ELISA结果(McAb10只与FA和FB反应,而不与Bartha-K61株反应)相吻合,也证明了PRV不同毒株抗原结构上存在差异。彭金美等[6]采用固定病毒稀释血清法测定了Bartha-K61和PRV新流行毒HeN1株抗血清之间的交叉中和抗体,发现PRV流行毒株(HeN1株)与疫苗株(Bartha-K61株)之间的抗原性存在一定差异。FJ2012株分离自福建省PR病猪群,该分离株不仅可以导致母猪流产,还可以引起中大猪发病,通过全基因组测序并与经典毒株比较发现FJ2012毒株存在基因变异[9]。本研究结果发现抗PRV高免血清与同源PRV病毒的中和效价均不同程度高于异源PRV病毒,抗原相关性R值也存在明显差异,且FB株和新型PRV FJ2012株的抗原相关性R值高于Bartha-K61株与FJ2012株的R值,而且对FB免疫猪的攻毒保护试验结果也发现FB株免疫易感仔猪能有效抵抗新型PRV(FJ2012株)的攻毒。以上结果表明PRV不同毒株之间存在抗原性差异,PRV FB株与新型PRV FJ2012株的抗原相关性更高,提示PRV FB株有望成为预防新型PRV(FJ2012株)的疫苗候选株,但FB株对FJ 2012强毒株免疫保护的最小免疫剂量、免疫产生期和持续期等还需进一步测定。

  • 图  1   不同水稻品种Cd-BAF聚类分析

    Figure  1.   Dendrogram of Cd-BAF clustering on varieties of rice

    表  1   土壤调理剂和叶面阻控剂来源与用量

    Table  1   Information on tested materials

    土壤调理剂
    Soil conditioner
    用量
    Hectare dosage/
    (kg·hm−2
    厂家
    Provider
    叶面阻控剂
    Foliar Blockers
    用量
    Hectare dosage/
    (L·hm−2
    厂家
    Provider
    牡蛎壳粉
    Oyster shell powder
    4500 福清市天润环保科技有限公司
    Fuqing Tianrun Environmental Protection Technology Co., Ltd.
    楚戈
    Chuge
    3 湖南环保桥科技有限公司
    Hunan Eco-Bridge Technology Co., Ltd.
    麦饭石粉
    Maifan stone powder
    4500 中国冶金地质总局第二地质勘查院
    The Second Geological Exploration Institute, China Metallurgical Geology Bureau
    玲珑硅
    Linglong silicon
    3 滁州市给力肥料科技有限公司
    Chuzhou City Giving Fertilizer Technology Co., Ltd.
    屹米达土壤修复剂IM-2
    Yimi soil conditioner IM-2
    1500 深圳屹米达环保科技有限公司
    Shenzhen Yimida Environmental Protection Technology Co., Ltd.
    给力硅
    Geili silicon
    3 滁州市给力肥料科技有限公司
    Chuzhou City Giving Fertilizer Technology Co., Ltd.
    屹米达土壤调理剂IM-3
    Yimi soil conditioner IM-3
    1500 深圳屹米达环保科技有限公司
    Shenzhen Yimida Environmental Protection Technology Co., Ltd.
    粮安好
    Lianganhao
    3 滁州市给力肥料科技有限公司
    Chuzhou City Giving Fertilizer Technology Co., Ltd.
    超稳矿化土壤修复新材料
    The ultra-stable mineralized soil remediation new material,
    4500 江苏隆昌化工有限公司
    Jiangsu Longchang Chemical Co., Ltd.
    液体硅
    Liquid silicon
    3 滁州市给力肥料科技有限公司
    Chuzhou City Giving Fertilizer Technology Co., Ltd.
    洋屿土壤结构调理剂
    Yangyu soil structure conditioner
    4500 泉州市洋屿土壤科技有限公司
    Quanzhou Yangyu Soil Technology Co., Ltd.
    下载: 导出CSV

    表  2   不同品种水稻产量及重金属Cd、Pb含量与有效量富集系数

    Table  2   Grain yield, Cd-Pb contents, and bioaccumulation of varieties of rice

    水稻品种
    Rice varieties
    产量 Yield/
    (kg·hm−2
    有效Pb
    Available Pb/
    (mg·kg−1
    有效Cd
    Available Cd/
    (mg·kg−1
    富集系数BAF
    Bioaccumulation factor
    BAF×10−2(Pb) BAF(Cd)
    甬优9号
    Yongyou 9
    8815.5±235.6d 0.040±0.004d 0.211±0.015d
    甬优1540
    Yongyou 1540
    8776.5±409.6b 0.099±0.001a 0.521±0.004a
    甬优17
    Yongyou 17
    10336.5±526.3a 0.077±0.002bc 0.405±0.009bc
    泰两优美丝
    Tailiangyoumeisi
    6616.5±167.8e 0.074±0.007c 0.389±0.028bc
    两优1516
    Liangyou 1516
    8856.0 ±257.9b 0.025±0.001b 0.096±0.011a 0.152±0.006b 0.505±0.045a
    喜两优丰丝苗
    Xiliangyoufengsimiao
    7255.5±187.6d 0.045±0.007a 0.084±0.006b 0.273±0.046a 0.442±0.027b
    更香优糖丝
    Gengxiangyoutangsi
    10015.5±306.9a 0.098±0.002a 0.516±0.009a
    更香优703
    Gengxiangyou 703
    10056.0±387.9a 0.095±0.005a 0.500±0.023a
    中浙优8号
    Zhongzheyou 8
    7855.5±259.6b 0.048±0.003a 0.070±0.005c 0.292±0.020a 0.368±0.020c
    增香丝隆望两优889
    Zengxiangsilongwangliangyou 889
    8316.0±194.3bc 0.033±0.004 d 0.174±0.015d
    “—”为未检出;数据后面不同小写字母表示差异显著(P < 0.05),下表同。
    "—" indicates not detected; data with different letters indicate significant differences at P<0.05. Same for bellow.
    下载: 导出CSV

    表  3   不同土壤调理剂对水稻产量、pH值及土壤和水稻糙米中Cd、Pb含量的影响

    Table  3   Rice yield per hectare and Cd-Pb in soil and brown rice under treatments of soil conditioners

    处理
    Treatment
    产量
    Hectare yield/(kg·hm−2
    pH 土壤重金属含量
    Content/(mg·kg−1)
    水稻糙米重金属含量
    Grain rice content/(mg·kg−1)
    有效Cd
    Available Cd
    有效Pb
    Available Pb
    Cd Pb
    空白对照
    Control group
    7216.5±233.4c 4.62±0.01e 0.149±0.002c 16.70±0.050b 0.054±0.001c
    牡蛎壳粉
    Oyster shell powder
    7495.5±198.2c 5.06±0.03b 0.078±0.003f 12.13±0.170e 0.018±0.003e
    屹米达土壤修复剂IM-2
    Yimi soil conditioner IM-2
    8016.0±203.2b 5.13±0.04a 0.160±0.001b 12.74±0.030d 0.060±0.001b
    屹米达土壤调理剂IM-3
    Yimi soil conditioner IM-3
    9816.0±368.2a 4.97±0.05c 0.089±0.003e 12.69±0.220d 0.009±0.001f
    超稳矿化土壤修复新材料
    New material for remediation
    of super-stable mineralized soil
    5935.5±153.9d 5.05±0.02b 0.136±0.008d 11.79±0.040f 0.042±0.001d
    洋屿土壤结构调理剂
    Yangyu soil structure conditioner
    9856.5±301.5a 5.00±0.06bc 0.225±0.007a 17.96±0.050a 0.040±0.002d 0.026±0.003
    麦饭石
    Maifan stone powder
    8304.0±267.6b 4.75 ±0.05d 0.089±0.002e 14.90±0.330c 0.067±0.001a
    下载: 导出CSV

    表  4   不同叶面阻控剂对水稻产量及水稻糙米中Cd、Pb含量的影响

    Table  4   Grain yield per hectare and Cd-Pb in brown rice under treatments of foliar blockers

    处理
    Treatment
    产量
    Hectare yield/
    (kg·hm−2
    水稻糙米含量
    Grain rice content/(mg·kg−1)
    Cd Pb
    空白对照 Control group 8980.5±332.6c 0.057±0.002a
    楚戈 Chuge 11656.5±419.7a 0.040±0.002b
    玲珑硅 Linglong silicon 9376.5±268.6c 0.034±0.002c
    给力硅 Geili silicon 9216.0±198.9c 0.041±0.002b
    粮安好 Liang'anhao 11176.5 ±365.1ab 0.017±0.001e 0.146±0.001
    液体硅 Liquid silicon 10696.5±297.8b 0.030±0.002d
    下载: 导出CSV

    表  5   不同综合处理对水稻产量及水稻糙米中Cd、Pb含量的影响

    Table  5   Grain yield per hectare and Cd-Pb in brown rice under combined treatment

    处理
    Treatment
    水稻品种
    Rice varieties
    土壤调理剂与叶面阻控剂及用量
    Soil conditioner, Foliar Blockerr and their dosages
    产量
    Hectare yield/
    (kg·hm−2
    pH 土壤重金属含量
    Soil content/(mg·kg−1 )
    水稻重金属含量Agricultural product content/(mg·kg−1 )
    牡蛎壳粉
    Oyster shell
    powder/
    (kg·hm−2)
    玲珑硅
    Linglong
    silicon/
    (L·hm−2)
    有效Cd
    Available Cd
    有效Pb
    Available Cd
    Cd Pb
    空白对照
    Control group
    增香丝隆望两优889
    Zengxiangsilongwang
    liangyou 889
    0 0 8116.5±355.2c 4.64±0.040c 0.151±0.002a 16.76±0.002a 0.054±0.180a
    处理1
    Treatment 1
    中浙优8号
    Zhongzheyou 8
    4500 0 8976.0±264.3b 5.26±0.010b 0.090±0.002b 11.72±0.001d 0.047±0.082b
    处理2
    Treatment 2
    中浙优8号
    Zhongzheyou 8
    4500 3 10456.5±194.2a 6.52±0.036a 0.088±0.002b 13.03±0.002c 0.044±0.092b
    处理3
    Treatment 3
    增香丝隆望两优889
    Zengxiangsilongwang
    liangyou 889
    4500 3 10255.5±398.1a 6.23±0.036b 0.085±0.001b 14.75±0.002b 0.036±0.326c
    下载: 导出CSV
  • [1]

    WEI B G, YANG L S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchemical Journal, 2010, 94(2): 99−107. DOI: 10.1016/j.microc.2009.09.014

    [2] 郁洁, 陈雅玲, 姜海波, 等. 江苏耕地保护与质量提升路径探析 [J]. 江苏农村经济, 2024(2):57−58. DOI: 10.3969/j.issn.1007-5275.2024.02.029

    YU J, CHEN Y L, JIANG H B, et al. Analysis on the path of cultivated land protection and quality improvement in Jiangsu Province [J]. Jiangsu Rural Economy, 2024(2): 57−58. (in Chinese) DOI: 10.3969/j.issn.1007-5275.2024.02.029

    [3] 黄薇, 吴凉萍, 宋路遥, 等. 配施不同腐秆剂对还稻田麦秸腐解和水稻产量的影响 [J]. 土壤, 2022, 54(1):40−46.

    HUANG W, WU L P, SONG L Y, et al. Impact of various SDMIs on wheat straw decomposition and rice yield [J]. Soils, 2022, 54(1): 40−46. (in Chinese)

    [4]

    MENG J, ZHONG L B, WANG L, et al. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil [J]. Environmental Science and Pollution Research International, 2018, 25(9): 8827−8835. DOI: 10.1007/s11356-017-1148-y

    [5]

    LUO X M, MENG J Q, CHEN X F, et al. Metabolomics-based study reveals the effect of lead (Pb) in the culture environment on Whitmania pigra [J]. Scientific Reports, 2020, 10(1): 4794. DOI: 10.1038/s41598-020-61745-1

    [6] 代允. 结合“土十条” 谈我国土壤污染及其防治问题[J]. 资源节约与环保, 2018(6): 96, 98.

    DAI Y. Discussion on soil pollution and its prevention and control in China in combination with “Ten Articles of Soil” [J]. Resources Economization & Environmental Protection, 2018(6): 96, 98. (in Chinese)

    [7] 蔡彦明, 贡觉, 徐友伟, 等. 受污染耕地安全利用实施工作中存在的问题及对策建议 [J]. 农业科技管理, 2021, 40(5):14−17,79.

    CAI Y M, GONGJUE, XU Y W, et al. Problems and suggestions on safely utilization of cultivated land contaminated by heavy metals [J]. Management of Agricultural Science and Technology, 2021, 40(5): 14−17,79. (in Chinese)

    [8] 董金龙, 徐烨红, 全智, 等. 中国设施种植土壤可持续利用的难点与应对策略 [J]. 土壤学报, 2024, 61(6):1467−1480. DOI: 10.11766/trxb202311010449

    DONG J L, XU Y H, QUAN Z, et al. The Obstacles and Countermeasures of Soil Sustainability in Protected Horticulture in China [J]. Acta Pedologica Sinica, 2024, 61(6): 1467−1480. DOI: 10.11766/trxb202311010449

    [9] 李奇, 王艳红, 李义纯, 等. 不同类型调理剂对镉污染土壤修复效果和微生物群落的影响 [J]. 南方农业学报, 2022, 53(7):1855−1866. DOI: 10.3969/j.issn.2095-1191.2022.07.007

    LI Q, WANG Y H, LI Y C, et al. Effects of the different types of conditioners on remediation and microbial community in Cd-contaminated soil [J]. Journal of Southern Agriculture, 2022, 53(7): 1855−1866. (in Chinese) DOI: 10.3969/j.issn.2095-1191.2022.07.007

    [10] 杨素勤, 魏森, 张彪, 等. 连续施用改性生物质炭对镉铅土壤修复效果及其对微生物群落结构的影响 [J]. 农业环境科学学报, 2022, 41(7):1460−1471. DOI: 10.11654/jaes.2021-1398

    YANG S Q, WEI S, ZHANG B, et al. Remediation effect of continuous application of modified biochar on cadmium-and lead-contaminated soil and its effect on microbial community structure [J]. Journal of Agro-Environment Science, 2022, 41(7): 1460−1471. (in Chinese) DOI: 10.11654/jaes.2021-1398

    [11] 王玉婷, 王紫玥, 刘田田, 等. 钝化剂对镉污染土壤修复效果及青菜生理效应影响 [J]. 环境化学, 2020, 39(9):2395−2403. DOI: 10.7524/j.issn.0254-6108.2020032505

    WANG Y T, WANG Z Y, LIU T T, et al. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi [J]. Environmental Chemistry, 2020, 39(9): 2395−2403. (in Chinese) DOI: 10.7524/j.issn.0254-6108.2020032505

    [12] 李中阳, 齐学斌, 樊向阳, 等. 不同钝化材料对污灌农田镉污染土壤修复效果研究 [J]. 灌溉排水学报, 2016, 35(3):42−44.

    LI Z Y, QI X B, FAN X Y, et al. Remediation of cadmium polluted soils by different amendments [J]. Journal of Irrigation and Drainage, 2016, 35(3): 42−44. (in Chinese)

    [13] 胡含秀, 周晓天, 张慧敏, 等. 重金属污染耕地安全利用钝化材料作用机制及效果研究进展 [J]. 江苏农业科学, 2023, 51(8):26−33.

    HU H X, ZHOU X T, ZHANG H M, et al. Research progress on mechanism and effect of passivation materials for safe utilization of heavy metal polluted cultivated land [J]. Jiangsu Agricultural Sciences, 2023, 51(8): 26−33. (in Chinese)

    [14] 国家质量监督检验检疫总局、中国国家标准化管理委员会. 土壤质量 有效态铅和镉的测定 原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009.
    [15]

    LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability [J]. Science of the Total Environment, 2018, 633: 206−219. DOI: 10.1016/j.scitotenv.2018.03.161

    [16] 关永鑫, 胡喜生, 闫淑君, 等. 闽江福州段河岸带土壤―植物系统重金属迁移富集研究[J/OL]. 植物科学学报, 2024: 1-18. (2024-11-27). http://kns.cnki.net/kcms/detail/42.1817.q.20240312.1702.002.html.

    GUAN Y X, HU X S, YAN S J, et al. Migration and accumulation of heavy metals in the soil-plant system of riparian zone in Fuzhou, Min River [J/OL]. Journal of Plant Science, 2024: 1-18. (2024-11-27). http://kns.cnki.net/kcms/detail/42.1817.q.20240312.1702.002.html. (in Chinese)

    [17]

    CHEN M, ALIM N, ZHANG Y T, et al. Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils [J]. Environmental Pollution, 2018, 239: 562−570. DOI: 10.1016/j.envpol.2018.04.050

    [18]

    XU Y, LIANG X F, XU Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review [J]. Pedosphere, 2017, 27(2): 193−204. DOI: 10.1016/S1002-0160(17)60310-2

    [19]

    SELEIMAN M F, KHEIR A M S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments [J]. Chemosphere, 2018, 204: 514−522. DOI: 10.1016/j.chemosphere.2018.04.073

    [20]

    SHAHEEN S M, RINKLEBE J. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil [J]. Ecological Engineering, 2015, 74: 319−326. DOI: 10.1016/j.ecoleng.2014.10.024

    [21]

    DING Y Z, WANG Y J, ZHENG X Q, et al. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris [J]. Ecotoxicology and Environmental Safety, 2017, 142: 207−215. DOI: 10.1016/j.ecoenv.2017.04.001

    [22] 蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析 [J]. 农业环境科学学报, 2016, 35(6):1028−1033. DOI: 10.11654/jaes.2016.06.002

    CAI Q L, LIN D S, WANG G, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars [J]. Journal of Agro-Environment Science, 2016, 35(6): 1028−1033. (in Chinese) DOI: 10.11654/jaes.2016.06.002

    [23]

    CHEN H P, YANG X P, WANG P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, Southern China [J]. Science of the Total Environment, 2018, 639: 271−277. DOI: 10.1016/j.scitotenv.2018.05.050

    [24] 任超, 朱利文, 李竞天, 等. 不同钝化剂对弱酸性镉污染土壤的钝化效果 [J]. 生态与农村环境学报, 2022, 38(3):383−390.

    REN C, ZHU L W, LI J T, et al. Study on the passivation effect of different treatments on weakly acidic cadmium polluted soil [J]. Journal of Ecology and Rural Environment, 2022, 38(3): 383−390. (in Chinese)

    [25] 张路, 唐婵, 余海英, 等. 稻-麦轮作模式下不同钝化材料对镉污染农田土壤的原位钝化效应 [J]. 环境科学, 2023, 44(3):1698−1705.

    ZHANG L, TANG C, YU H Y, et al. In-situ remediation effect of cadmium-polluted agriculture land using different amendments under rice-wheat rotation [J]. Environmental Science, 2023, 44(3): 1698−1705. (in Chinese)

    [26] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制 [J]. 生态学报, 2015, 35(23):7921−7929.

    WANG X J, WANG W B, YANG L, et al. Transport pathways of cadmium(Cd) and its regulatory mechanisms in plant [J]. Acta Ecologica Sinica, 2015, 35(23): 7921−7929. (in Chinese)

    [27]

    GAO M, ZHOU J, LIU H L, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice [J]. Science of the Total Environment, 2018, 631: 1100−1108.

    [28] 张梅华, 姜朵朵, 于松, 等. 叶面肥对农作物阻镉效应机制研究进展 [J]. 大麦与谷类科学, 2017, 34(3):1−5.

    ZHANG M H, JIANG D D, YU S, et al. Research progress on the cadmium resistant mechanisms of foliar fertilizers on crop [J]. Barley and Cereal Sciences, 2017, 34(3): 1−5. (in Chinese)

  • 期刊类型引用(1)

    1. 万曾培,王征帆,庞旋飞,王凤求,王贵平,李中圣,白挨泉. PRV变异株gB和gC基因分子特征及抗原差异性分析. 中国兽医学报. 2020(08): 1454-1460 . 百度学术

    其他类型引用(3)

图(1)  /  表(5)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  12
  • PDF下载量:  19
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-10-05
  • 录用日期:  2024-10-25
  • 网络出版日期:  2024-11-29
  • 刊出日期:  2024-11-27

目录

/

返回文章
返回