Compositions and Antioxidant Activities of Oolong Tea Extracts Made by Two Processing Methods
-
摘要: 以清香乌龙茶为原料,采用先65%醇洗+后水提和先水提+后65%醇沉等2种提取方式制得粗茶叶多糖(TPs-水提和TPs-醇沉)及相应的附属产物(TPs-A、TPs-B和TPs-C),分析比较其组成含量、还原力及DPPH清除活性变化。结果表明,先65%醇洗+后水提制得的粗茶多糖中多糖含量最高,可溶性蛋白含量最低。其他组分来看,乙醚浸提茶叶有助于茶多酚/儿茶素类、总黄酮类、咖啡碱等小分子物质的浸出,水提醇沉则对茶叶内含成分的分离富集效果较差。抗氧化活性试验表明,2种提取方式制备的粗茶多糖TPs-水提和TPs-醇沉的还原力及DPPH清除活性显著弱于附属产物TPs-A、TPs-B和TPs-C。相关性分析表明,粗茶多糖的抗氧化活性表达与茶多酚中的儿茶素类,尤其是酯型儿茶素呈显著正相关,而与茶多糖、总黄酮和咖啡碱则呈正相关。结果表明,茶多糖具有抗氧化作用,其活性弱于茶叶中的多酚类。Abstract: An aromatic oolong tea was used as the raw material to extract polysaccharides (TPs) and other constituents (TPs-A, TPs-B and TPs-C) using two processing methods. The chemical compositions, reducing power, and DPPH scavenging capacities of the extracts were determined. The results showed that the method applying 65% ethanol for pre-soaking followed by a water extraction (E-W) produced more TPs and less soluble protein than the process employing a water extraction before precipitation by 65% ethanol (W-E). E-W promoted the extractions of polyphenols, catechins, flavonoids and caffeine; while, W-E was less efficient in separating or concentrating the components. On the antioxidant activity, TPs obtained by both methods were significantly lower on the reducing power and DPPH scavenging capacity than those of TPs-A, TPs-B and TPs-C. The correlation analysis suggested that the antioxidant activity of TPs was significantly related to the contents of polyphenols, catechins, and particularly ester catechins in the extract.There was also a synergism among TPs, total flavonoid and caffeine. It appeared that as antioxidants, TPs exhibited significantly lower activity than the phenolic compounds in the tea.
-
Keywords:
- tea polysaccharides /
- extraction /
- components /
- antioxidant activity
-
微重力影响生命活动的过程和机理,是人类为实现征服太空的目标所必须研究阐明的问题[1]。任何空间微重力试验都需要大量的地面模拟准备试验作为基础,Krikorian等[2]研究发现微重力和模拟微重力条件下胡萝卜细胞发育的不同阶段胚的生长比例相同,说明模拟微重力可以替代太空微重力研究植物生长的试验。地面模拟回转器因经济、易操控,可反复试验,可弥补空间微重力试验条件相对不足并且造价昂贵的缺憾[3-4]。诸多的真实以及模拟微重力对不同植物种类,不同植物部位影响的相关研究表明,微重力对生物的遗传、生长及生理特征等有影响[5],如模拟微重力环境对人参、甜菊、燕麦、向日葵、萝卜等植物生长发育影响的相关报道[6-10]。目前,尚未有模拟微重力对食用菌生长与营养品质影响的相关报道。为此,本研究利用三维回转器模拟微重力环境,探讨微重力作用对金针菇氨基酸营养成分的影响,为揭示微重力对食用菌生长发育机理及开展空间园艺与育种提供科学借鉴。
1. 材料与方法
1.1 供试菌种
试验于2015年开展研究,金针菇品种由福建省农业科学院土壤肥料研究所提供。
1.2 回转装置
三维回转装置为福建省农业科学院生态农业研究所在国家“863”计划支持下自主研发的适合植物湿润栽培的旋转式植物栽培装置(中国发明专利:ZL200710009491.6)。装置设置两套独立旋转机构,三维旋转栽培盘在绕着自转心轴旋转的同时,又绕着公转心轴旋转。机架内部设置受控密闭舱,三维旋转栽培盘置于舱内,舱内气体组分、调速电机转速、人工光源光照强度和光周期等技术参数也可根据试验要求进行调控,采用触摸屏作为人机交互界面[11-12]。
1.3 试验方法与设计
1.3.1 栽培设计
试验设2个处理,分别为模拟微重力金针菇处理(X3) 与静止栽培金针菇处理(X0)。
金针菇培养料配方:棉籽壳77%,石膏1%,白糖1%,石灰2%,玉米粉19%,pH自然。培养料料水比1:1.8,拌匀后装入塑料袋,每袋装干料230 g,套上封口环,环内塞棉花,高压灭菌。待培养料温度冷却至26℃左右接种,每处理3个重复,每个重复10袋。接种后的菌袋置于回转装置上避光培养,培养温度22~23℃,空气相对湿度70%~75%。出菇时环境温度控制在18~21℃,空气相对湿度控制在90%~93%。三维回转装置频率1/60。
1.3.2 氨基酸组成测定
采收子实体菌盖呈钟型,尚未开伞时的金针菇。烘干箱中75℃烘干,粉碎机中磨粉150目过筛,用密封袋包装后在干燥环境中保藏备用。
将烘干样品置于6 mol·L-1盐酸溶液中,于110℃水解24 h,用氨基酸自动分析仪(日立8801型)测定氨基酸含量[13]。
1.4 数据统计与分析
氨基酸评分(Amino Acid Score,AAS)、生物价(Biologica1 Value,BV)、必需氨基酸指数(Essential Amino Acid Index,EAAI)和营养指数(Nutritional Index,NI)采用Bano的方法[14];化学评分(chemical score,CS)采用FAO确定的方法[15];氨基酸比值系数(RCAA)与氨基酸比值系数分(SRCAA)按朱圣陶的方法测定[16]。
2. 结果与分析
2.1 模拟微重力和静止栽培的金针菇氨基酸含量
X3与X0处理的金针菇子实体中所含17种氨基酸种类完全相同,模拟微重力栽培金针菇子实体中有15种氨基酸含量高于静止栽培处理,氨基酸总量达151.2 g·kg-1,比静止栽培处理提高了26.3%。模拟微重力处理的金针菇必需氨基酸总量81.7 g·kg-1,比静止栽培处理提高了29.89%,其必需氨基酸总量与氨基酸总量的比值为54.03%,超过食物类的必需氨基酸与氨基酸总含量的比值应接近40%的标准[17]。天冬氨酸和谷氨酸是鲜味氨基酸,模拟微重力处理的鲜味氨基酸含量达34.7 g·kg-1,比静止栽培处理的提高了37.15%。说明模拟微重力效应不仅可以提高金针菇的各种类氨基酸的含量,尤其对提高必需氨基酸和鲜味氨基酸含量有显著的增效效应(表 1)。
表 1 模拟微重力与静止栽培的金针菇子实体氨基酸含量比较Table 1. AA in fruiting bodies of F. velutipescultivated under simulated microgravity and conventional method[单位/(g·kg-1)] 氨基酸 X0 X3 增幅/% 天门冬氨酸Asp 9.9 15.5 56.6 苏氨酸Thr 8.9 10.2 14.6 丝氨酸Ser 5.7 7.6 33.3 谷氨酸Glu 15.4 19.2 24.7 甘氨酸Gly 5.4 6.6 22.2 丙氨酸Ala 7.2 8.5 18.1 半胱氨酸Cys 2.4 3.5 45.8 缬草氨酸Val 6.0 8.3 38.3 甲硫氨酸Met 9.6 10.3 7.3 异亮氨酸Ile 6.3 7.7 22.2 亮氨酸Leu 7.9 11.7 48.1 酪氨酸Tyr 4.2 5.5 31.0 苯丙氨酸Phe 5.6 8.3 48.2 赖氨酸Lys 12.0 16.2 35.0 组氨酸His 2.7 2.8 3.7 精氨酸Arg 5.8 4.7 -19.0 脯氨酸Pro 4.7 4.6 -2.1 氨基酸总量 119.7 151.2 26.30 必需氨基酸总量 62.9 81.7 29.89 鲜味氨基酸总量 25.3 34.7 37.15 2.2 模拟微重力和静止栽培的金针菇必需氨基酸组成及含量
必需氨基酸含量(Essential Amino Acids,EAA)指必需氨基酸含量分别占总氨基酸含量的比例[18]。模拟微重力环境栽培的金针菇必需氨基酸含量比静止栽培处理、鸡蛋白、FAO/WHO的参照标准分别提高了2.82%、8.71%和52.63%(表 2)。此外,模拟微重力处理的缬草氨酸、亮氨酸、苯丙氨酸+酪氨酸和赖氨酸含量比静止栽培处理的子实体提高l1.34%、17.27%、11.48%和6.78%,而苏氨酸、蛋氨酸+胱氨酸、异亮氨酸则低了14.67%、9.86%和3.34%。参照世界粮农和卫生组织标准和鸡蛋白的氨基酸营养模式,从表 2还发现,模拟微重力和静止栽培的金针菇蛋白质必需氨基酸的含量均高于世界粮农和卫生组织规定的标准和鸡蛋白的含量。
表 2 模拟微重力和静止栽培的金针菇子实体必需氨基酸组成及含量Table 2. Compositions and contents of essential AA in fruiting bodies of F. velutipes cultivated under simulated microgravity and conventional method处理 苏氨酸
Thr蛋氨酸+胱氨酸
Met+Cys缬草氨酸
Val异亮氨酸
Ile亮氨酸
Leu苯丙氨酸+酪氨酸Phe+Tyr 赖氨酸
Lys总量 X0 7.44 10.03 5.01 5.26 6.60 8.19 10.03 52.55 X3 6.75 9.13 5.49 5.09 7.74 9.13 10.71 54.03 鸡蛋白 5.1 5.5 7.3 6.6 8.8 10.0 6.4 49.7 FAO/WHO 4.0 3.5 5.0 4.4 7.0 6.0 5.5 35.4 2.3 模拟微重力和静止栽培的金针菇蛋白质化学评分
模拟微重力栽培金针菇子实体的化学评分比静止栽培处理高6.63%,t测验的差异达到显著水平。缬草氨酸、亮氨酸和苯丙氨酸+酪氨酸和赖氨酸评分值比静止栽培处理提高6.63%、14.10%、8.40%和3.91%,而苏氨酸、蛋氨酸+胱氨酸、异亮氨酸则低了13.31%、12.98%和6.20%(表 3)。
表 3 模拟微重力和静止栽培的金针菇的蛋白质化学评分Table 3. CS of proteins in fruiting bodies of F. velutipes cultivated under simulated microgravity and conventional method处理 苏氨酸
Thr蛋氨酸+胱氨酸
Met+Cys缬草氨酸
Val异亮氨酸
Ile亮氨酸
Leu苯丙氨酸+酪氨酸Phe+Tyr 赖氨酸
Lys化学评价 X0 137.9 172.4 64.9 75.4 70.9 77.4 148.2 64.9 X3 121.7 152.6 69.2 71.0 80.9 83.9 154.0 69.2 2.4 模拟微重力和静止栽培的金针菇氨基酸评分
模拟微重力栽培金针菇子实体的氨基酸评分比静止栽培处理高16.43%,t测验的差异达到显著水平。缬草氨酸、亮氨酸和苯丙氨酸+酪氨酸和赖氨酸评分比静止栽培高9.47%、17.18%、11.43%和6.86%,而苏氨酸、蛋氨酸+胱氨酸、异亮氨酸则低了10.20%、9.82%和3.37%。
2.5 模拟微重力和静止栽培的金针菇必需氨基酸指数、生物价和营养指数
模拟微重力栽培金针菇子实体的必需氨基酸指数、生物价、营养指数均高于静止栽培处理的相对应值,其依次比静止栽培处理高2.92%、3.21%和29.37%,这表明模拟微重力栽培金针菇子实体的各类氨基酸组分不仅含量高于静止栽培处理,相应的氨基酸组成比例较为合理。
表 4 模拟微重力和静止栽培金针菇的氨基酸评分Table 4. AAS of proteins in fruiting bodies of F. velutipes cultivated under simulated microgravity and conventional method处理 苏氨酸
Thr蛋氨酸+胱氨酸
Met+Cys缬草氨酸
Val异亮氨酸
Ile亮氨酸
Leu苯丙氨酸+酪氨酸Phe+Tyr 赖氨酸
Lys氨基酸评分 X0 185.9 286.4 100.3 119.6 94.3 136.5 182.3 94.3 X3 168.7 260.8 109.8 115.7 110.5 152.1 194.8 109.8 表 5 模拟微重力和静止栽培金针菇的必需氨基酸指数、生物价和营养指数Table 5. EAAI, BVand NI of proteins in fruitingbodies of F. velutipes cultivated under simulated microgravity and conventional method处理 必需氨基酸指数 生物价 营养指数 X0 104.92 102.7 12.6 X3 107.98 106.0 16.3 2.6 模拟微重力和静止栽培对金针菇氨基酸比值和比值系数分
根据WHO/FAO的必需氨基酸评分模式,RC值>1表明该氨基酸相对过剩,RC值<1则表明不足,RC最低者为第一限制性氨基酸。如果必需氨基酸组成含量组成与EAA模式一致,则SRC=100,与EAA模式越接近,则SRC越接近100,其营养价值越高[18]。模拟微重力栽培金针菇子实体的氨基酸比值系数分(SRCAA)高于静止栽培处理,其相应值比静止栽培处理高0.66%。根据必需氨基酸模式,静止栽培的金针菇必需氨基酸——亮氨酸的氨基酸比值系数为0.9,小于WHO/FAO模式的必需氨基酸的RC值1,说明静止栽培的金针菇的第一限制氨基酸是亮氨酸。但是模拟微重力栽培的金针菇中亮氨酸的氨基酸比值系数为1.2,高于WHO/FAO模式的RC值,而且其他必需氨基酸的氨基酸比值系数均高于1,表明模拟微重力栽培金针菇的蛋白质是优质蛋白质。
表 6 模拟微重力和静止栽培金针菇的氨基酸比值系数分Table 6. AARC of proteins in fruiting bodies of F. velutipes cultivated under simulated microgravity and conventional method处理 苏氨酸
Thr蛋氨酸+胱氨酸
Met+Cys缬草氨酸
Val异亮氨酸
Ile亮氨酸
Leu苯丙氨酸+酪氨酸Phe+Tyr 赖氨酸
Lys氨基酸比值系数分 X0 1.86 2.86 1.00 1.20 0.94 1.36 1.82 72.68 X3 1.69 2.61 1.10 1.16 1.11 1.52 1.95 73.16 2.7 模拟微重力和静止栽培的金针菇蛋白质营养价值影响的综合评价
从表 7看出,模拟微重力栽培金针菇的化学评分、氨基酸评分、氨基酸比值系数分、必需氨基酸指数、营养指数及生物价6项蛋白质指标均高于静止栽培的金针菇,说明模拟微重力有利于金针菇子实体的氨基酸合成与积累,不仅氨基酸总量高,而且各种氨基酸组成比例更为合理。根据通用的蛋白质营养价值评判标准,模拟微重力栽培金针菇子实体中蛋白质综合营养价值优于静止栽培处理。
表 7 模拟微重力和静止栽培金针菇的蛋白质营养综合评价Table 7. Over-allnutritional qualities of proteins in fruiting bodies of F. velutipes cultivated under simulated microgravity and conventional method处理 化学评分 氨基酸评分 氨基酸比值系数分 必需氨基酸指数 营养指数 生物价 X0 64.9 94.3 72.68 104.92 12.6 102.7 X3 69.2 109.8 73.16 107.98 16.3 106.0 3. 讨论与结论
诸多研究发现,微重力对作物的生长、发育和繁殖产生一定的影响,而且多是以不利影响为主。Giuseppe等[19]研究空间实验微重力对芸芥发芽率、苗干鲜重、葡萄糖与果糖含量、蔗糖和淀粉含量有不利影响;徐国鑫等[20]发现模拟微重力抑制拟南芥种子贮藏蛋白的积累,导致种子贮藏蛋白总体含量降低。本研究模拟微重力栽培的金针菇子实体17种氨基酸中有15种氨基酸含量高于静止栽培处理,且氨基酸、必需氨基酸和鲜味氨基酸总量均高于静止处理,说明模拟微重力栽培有利于金针菇中蛋白质物质的代谢与积累,其结果与赵伟等[21]研究经回转器处理的人参细胞的人参皂苷含量提高10%左右相似。为此模拟微重力的相关试验要因作物而异,在今后的科学研究中需根据具体作物具体分析。
由于食物蛋白质中一种或几种必需氨基酸缺少或不足,就会使食物蛋白质合成为机体蛋白质的转变过程受限,进而限制了此种蛋白质的营养价值[22]。本研究的静止栽培金针菇中亮氨酸的氨基酸评分与必需氨基酸比值系数均最小,因此亮氨酸是限制氨基酸;而模拟微重力栽培的金针菇限制氨基酸是缬草氨酸,苯丙氨酸+酪氨酸的必需氨基酸比值系数RC值大于1。因此模拟微重力栽培可提升秀珍菇中氨基酸的含量,尤其是限制性氨基酸——苯丙氨酸+酪氨酸的含量,从而更为接近人体蛋白质各种氨基酸的构成比例,易于更完全被人体吸收转化。
模拟微重力栽培金针菇子实体中有15种氨基酸含量高于静止栽培处理,而且化学评分、氨基酸评分、氨基酸比值系数分、必需氨基酸指数、生物价与营养指数6项蛋白质指标均高于静止栽培的金针菇,说明模拟微重力栽培金针菇有利于其氨基酸的形成,不仅能提高蛋白质含量,而且促进了各种氨基酸构成比例的合理性,使之更为接近人体蛋白质各种氨基酸的构成比例,其作用机理有待于进一步的探索。微重力是否对维生素、脂肪酸、多糖、微量元素以及重金属的作用也有待于深入研究。
-
表 1 茶多糖及分离物的组分含量
Table 1 Components of TPs and other constituents
组分
/(μg·mL-1)先醇洗+后水提 先水提+后醇沉 TPs-水提 TPs-A TPs-醇沉 TPs-B TPs-C 茶多糖 329.55±1.92a 200.32±1.61b 252.95±4.18b 267.27±3.21b 275.45±4.50b 可溶性蛋白 65.58±1.43c 184.10±6.24a 154.17±1.79b 190.81±1.70a 202.00±1.61a 茶多酚 281.50±9.19b 546.15±1.36a 241.83±12.92b 554.81±4.08a 612.02±3.40a 总黄酮 38.82±0.71b 63.33±0.52a 34.65±0.35b 49.78±1.04b 50.51±0.52b 儿茶素总量 184.31±1.21c 383.32±5.74a 52.33±1.63d 280.43±3.76b 288.66±5.10b 表没食子儿茶素(ECG) 52.70±1.60c 118.40±9.72a 20.71±2.03d 78.26±1.25b 81.07±2.00b 儿茶素(C) 8.29±0.76c 2.90±0.42d 2.98±0.22d 10.04±0.37b 12.17±0.24a 表没食子儿茶素没食子酸酯(EGCG) 89.51±1.78c 199.96±3.59a 17.01±1.01d 141.18±2.28b 144.26±3.14b 表儿茶素(EC) 8.63±0.20c 17.42±0.19a 3.16±0.17d 13.82±0.94b 14.09±0.44b 表儿茶素没食子酸酯(ECG) 25.19±0.38c 44.64±0.65a 8.48±0.80d 37.13±0.50b 37.07±0.26b 咖啡碱 15.72±1.62d 89.25±1.82b 72.24±1.60c 98.20±2.92b 108.97±2.68a 注:儿茶素总量为EGC、C、EGCG、EC、ECG之和。 表 2 抗氧化成分与DPPH清除活性及还原力变化的相关分析
Table 2 Effects of antioxidants on DPPH scavenging capacity and reducing power
项目 Pearson相关性 茶多糖 茶多酚 儿茶素类 EGC C EGCG EC ECG 咖啡因 总黄酮 DPPH清除率 0.599 0.991* 0.856* 0.813 0.520 0.857* 0.890* 0.878* 0.751 0.821 还原力 0.625 0.893* 0.900* 0.852 0.569 0.893* 0.914* 0.926* 0.447 0.858* 注:*表示显著相关。 -
[1] CAO H. Polysaccharides from Chinese tea:recent advance on bioactivity and function[J]. International Journal of Biological Macromolecules, 2013, 62:76-79. DOI: 10.1016/j.ijbiomac.2013.08.033
[2] 杨军国, 陈泉宾, 王秀萍, 等.茶多糖组成结构及其降血糖作用研究进展[J].福建农业学报, 2014, 29(12):1260-1264. DOI: 10.3969/j.issn.1008-0384.2014.12.021 [3] CHEN G J, YUAN Q X, SAEEDUDDIN M, et al. Recent advances in tea polysacchzrides:Extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153:663-678. DOI: 10.1016/j.carbpol.2016.08.022
[4] 王忠雷, 杨丽燕, 曾详伟, 等.新技术在中药多糖提取工艺中的单独及协同应用[J].世界科学技术:中医药现代化, 2013, 15(6):1441-1446. http://www.cnki.com.cn/Article/CJFDTOTAL-SJKX201306037.htm [5] 任小盈, 李静, 马存强, 等.茶多糖的提取与分离纯化技术研究新进展[J].安徽农业科学, 2014, 42(23):7993-7995, 7999. DOI: 10.3969/j.issn.0517-6611.2014.23.105 [6] 石奇.植物多糖的新型提取分离技术应用进展[J].西安文理学院学报:自然科学版, 2015, 18(3):50-54. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGZY20170927003&dbname=CAPJ2015 [7] 王淑萍, 李晓静, 张桂珍.黄芪多糖提取分离纯化工艺的优化研究[J].分子科学学报(中、英文), 2008, 24(1):60-64. http://www.cnki.com.cn/Article/CJFDTOTAL-FZKB200801014.htm [8] 李卷梅, 聂少平, 李景恩, 等.香薷多糖的乙醇分级纯化及其性质[J].食品科学, 2010, 31(9):182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201019040.htm [9] 陆广富, 陈晓兰, 黄亚奇, 等.桑叶粗多糖最佳提取工艺研究[J].中国畜牧兽医, 2016, 43(7):1922-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-GWXK201607040.htm [10] 杨军国, 王丽丽, 陈键, 等.乙醇在茶叶多糖提取中的应用研究[J].茶叶学报, 2016, 57(4):192-196. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKJ201604008.htm [11] 杨军国, 陈键, 王丽丽, 等.乙醇法沉淀茶多糖的抗氧化活性评价[J].福建农业学报, 2016, 31(2):199-204. http://www.fjnyxb.cn/CN/abstract/abstract2877.shtml [12] 王丽丽, 陈键, 宋振硕, 等.茶叶中没食子酸、儿茶素类和生物碱的HPLC检测方法研究[J].福建农业学报, 2014, 29(10):987-994. DOI: 10.3969/j.issn.1008-0384.2014.10.011 [13] BERKER K I, GVLVK, TOR I, et al. Total antioxidant capacity assay using optimized ferricyanide/Prussian blue method[J]. Food Analytical Methods, 2010, 3(3):154-168. DOI: 10.1007/s12161-009-9117-9
[14] 韦献雅, 殷丽琴, 钟成, 等. DPPH法评价抗氧化活性研究进展[J].食品科学, 2014, 35(9):317-322. DOI: 10.7506/spkx1002-6630-201409062 [15] 李卷梅, 聂少平, 李景恩, 等.香薷多糖的乙醇分级纯化及其性质[J].食品科学, 2010, 31(19):182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201019040.htm [16] 张宁, 武永福.黄花菜粗多糖梯度乙醇提取工艺及其抗氧化活性研究[J].中国食物与营养, 2014, 20(11):60-62. DOI: 10.3969/j.issn.1006-9577.2014.11.015 [17] 邹胜, 徐溢, 张庆.天然植物多糖分离纯化技术研究现状和进展[J].天然产物研究与开发, 2015, 27(8):1501-1509. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW201508032.htm [18] 李红法, 郭松波, 满淑丽, 等.乙醇分级沉淀提取黄芪多糖及其理化性质和抗氧化活性研究[J].中国中药杂志, 2015, 40(11):2112-2116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201511009.htm [19] 萧力争, 胡祥文, 蔡金娥, 等.绿茶乙醇浸提技术研究[J].天然产物研究与开发, 2006, 18(4):634-636. http://www.cnki.com.cn/Article/CJFDTOTAL-TRCW200604025.htm [20] 杨军国, 陈键, 王丽丽, 等.醇沉分级粗茶多糖的抗氧化活性比较及变化机制[J].食品工业科技, 2016, 37(17):96-100, 105. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201617018.htm [21] CHEN H X, WANG Z S, QU Z S, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4):629-635. DOI: 10.1007/s00217-009-1088-y
[22] 于淑池, 侯金鑫.龙井茶多糖对自由基和NO2--清除作用研究[J].食品研究与开发, 2012, 33(4):28-31. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=spyk201204011&dbname=CJFD&dbcode=CJFQ [23] 何念武, 李丹.商洛绿茶多糖的分离纯化及体外抗氧化和抗肿瘤活性研究[J].食品发酵与工业, 2015, 41(8):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201508015.htm [24] WANG Y L, ZHAO Y, MAROBELA K A, et al. Tea polysaccharides as food antioxidants:an old women's tale?[J]. Food Chemistry, 2013, 138(2-3):1923-1927. DOI: 10.1016/j.foodchem.2012.09.145
[25] 王黎明, 夏文水.茶多糖降血糖机制的体外研究[J].食品与生物技术学报, 2010, (3):354-358. http://www.cnki.com.cn/Article/CJFDTOTAL-WXQG201003009.htm [26] 李娟, 活泼, 杨海燕.茶叶功效成分研究进展[J].浙江科技学院学报, 2005, 17(4):285-289. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ASSF20170713001&dbname=CAPJ2015 [27] 申雯, 黄建安, 李勤, 等.茶叶主要活性成分的保健功能与作用机制研究进展[J].茶叶通讯, 2016, 43(1):8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201601004.htm -
期刊类型引用(3)
1. 王广慧,魏雅冬,于德涵,张腾霄,王斌. 益生菌发酵制备金针菇抗氧化肽的研究. 饲料研究. 2023(04): 95-100 . 百度学术
2. 胡忠玲. 生态环境保护对金针菇增产效应的影响分析. 中国食用菌. 2019(09): 116-119 . 百度学术
3. 陶永新,段静怡,李依宁,李自燕,宋寒冰,张祺锶,黄嘉华,高玲玲,谢宝贵. 金针菇L-赖氨酸合成通路基因鉴定及对不同光质的响应表达. 食用菌学报. 2018(04): 1-8 . 百度学术
其他类型引用(0)