Crop Yield, Rhizosphere Enzyme Activity, and Soil Fertility as Affected by Peanut/Maize Intercropping
-
摘要:
目的 研究花生玉米间作对土壤酶活性、养分及作物产量的影响。 方法 采用大田试验的方法,以泉花557及雪甜7401为材料,在不同生育时期,测定花生单作、玉米单作和花生玉米间作根际土壤养分含量和酶活性的变化规律,并进行相关性分析。 结果 (1)在花生开花下针期和结荚期,花生玉米间作处理作物根际土壤脲酶活性分别比花生单作提高4.7%和5.0%,分别比玉米单作提高了2.6%和4.3%。(2)在花生苗期、开花下针期及花生成熟期,间作处理作物根际土壤酸性磷酸酶活性分别比花生单作提高8.0%、13.0%和34.7%,分别比玉米单作提高11.1%、19.6%和6.4%。(3)在花生苗期、开花下针期、结荚期及花生成熟期,花生玉米间作处理作物根际土壤蔗糖酶活性分别比花生单作提高1.5%、21.5%、11.2%和6.4%,分别比玉米单作提高了46.4%、33.8%、27.3%和11.1%。(4)在花生成熟期时,间作根区土壤的碱解氮和速效钾含量分别比玉米单作提高15.11%和5.66%,碱解氮、有效磷和速效钾含量分别比花生单作提高了3.42%、13.17%和11.39%。(5)相关性分析结果表明,在花生开花下针期,碱解氮与酸性磷酸酶、蔗糖酶存在显著正相关关系(P<0.05),有效磷与酸性磷酸酶、蔗糖酶存在显著正相关关系(P<0.05);在花生结荚期,碱解氮与蔗糖酶存在显著正相关关系(P<0.05);速效钾与酸性磷酸酶存在显著正相关关系(P<0.05);在花生成熟期,速效钾与过氧化氢酶存在显著正相关关系(P<0.05)。(6)花生玉米间作的经济收益为48 217.50 元·hm−2,分别比花生单作和玉米单作的收益增加8 842.50 元·hm−2和3 157.50 元·hm−2。 结论 花生玉米间作可以改善两种作物根际土壤酶活性和养分状况,并能提高经济效益。 Abstract:Objective Effects of peanut/maize intercropping on crop yield, rhizosphere enzyme activity, and nutrients in soil were studied. Method In a field experiment, Quanhua 557 peanut and Xuetian 7401 maize plants were cultivated either separately or under intercropping. The resulting crop yields as well as the nutrient content and enzyme activity in the rhizosphere soils were monitored at different growth stages of peanut monoculture, maize monoculture and peanut/maize intercropping for a correlation analysis. Result (1) In comparison with monoculture, peanut intercropped with maize raised the rhizosphere urease activity by 4.7% at peanut flowering stage, and by 5.0% at pod setting stage. For maize, the increases at the stages were 2.6% and 4.3%, respectively. (2) During seedling, flowering/needle setting, and maturation of the peanut plants, the acid phosphatase activities in soil were 8.0%, 13.0%, and 34.7%, respectively, higher under intercropping than monoculture. For maize, the activities rose by 11.1%, 19.6%, and 6.4%, respectively. (3) In the seedling, flowering/needle setting, pod setting, and maturation of peanut plants, the invertase activity in soil increased 1.5%, 21.5%, 11.2%, and 6.4%, respectively, by the intercropping. In those stages of maize plants, the increases were 46.4%, 33.8%, 27.3%, and 11.1%, respectively. (4) At peanut maturation, the contents of alkali hydrolyzable nitrogen and available potassium in the intercropped rhizosphere soil were 15.11% and 5.66%, respectively, higher than those of maize monoculture, while the contents of alkali hydrolyzable nitrogen, available phosphorus, and available potassium 3.42%, 13.17%, and 11.39%, respectively, higher than those of monoculture. (5) A significant correlation existed between the alkali hydrolyzable nitrogen and the activities of acid phosphatase and sucrase, as well as between the available phosphorus and the activities of acid phosphatase and sucrase, in soil when the peanut plants were flowering and needle setting (P<0.05). At the pod setting stage, it was one between the alkali hydrolyzable nitrogen and the invertase activity (P<0.05), and another between the available potassium and the acid phosphatase (P<0.05). At maturity of peanut, available potassium in the rhizosphere soil correlated significantly with catalase activity (P<0.05). (6) The intercropping generated 48 217.50 yuan·hm−2 in revenue, which was 8 842.50 yuan·hm−2 more than the peanut monoculture or 3 157.50 yuan·hm−2 more than the maize monoculture. Conclusion The peanut/maize intercropping significantly increased the enzyme activity and nutrient contents in the rhizosphere soil as well as the economic return over monoculture of either crop. -
Key words:
- Peanuts /
- maize /
- intercropping /
- enzyme activity /
- nutrient
-
图 2 不同时期花生玉米间作对土壤脲酶活性影响
注:大写字母不同表示差异极显著(P<0.01),小写字母不同表示差异显著(P<0.05)。显著性分析为按各时期分析,下图同。
Figure 2. Effect of peanut/maize intercropping at different stages of plant growth on soil urease activity
Note: Different capital letters mean significant difference (P<0.01), and different lowercase letters mean significant difference (P<0.05). The significance analysis is based on the same period, and the following fig is the same.
表 1 不同时期土壤养分与酶活性的相关性分析
Table 1. Correlation between soil nutrients and enzyme activities at different stages of plant growth
时期
Stage项目
Item脲酶
Soil urease activity酸性磷酸酶
Soil acid phosphataseactivity蔗糖酶
Soil invertase activity过氧化氢酶
Soil catalase activity花生苗期
Peanut seedling stage碱解氮
Alkali hydrolyzable nitrogen−0.825 −0.176 −0.801 0.809 有效磷
Available phosphorus0.932 0.913 0.946 0.031 速效钾
Available potassium−0.731 0.027 −0.702 0.888 花生开花下针期
Flowering and needle
setting stage of peanut碱解氮
Alkali hydrolyzable nitrogen0.907 0.956* 0.954* 0.947 有效磷
Available phosphorus0.852 0.984* 0.983* 0.903 速效钾
Available potassium−0.562 0.135 0.140 −0.469 花生结荚期
Peanut pod setting stage碱解氮
Alkali hydrolyzable nitrogen0.546 0.826 0.952* −0.133 有效磷
Available phosphorus0.529 0.837 0.946 −0.153 速效钾
Available potassium0.232 0.968* 0.794 −0.459 花生成熟期
Peanut maturity碱解氮
Alkali hydrolyzable nitrogen−0.884 −0.054 0.923 0.454 有效磷
Available phosphorus0.835 0.901 −0.105 0.563 速效钾
Available potassium0.212 0.947 0.621 0.980* *为P<0.05,**为P<0.01。
*means P<0.05; **means P<0.01.表 2 花生玉米间作对产量及经济效益的影响
Table 2. Effects of peanut/maize intercropping on crop yield and economic benefits
处理
Treatment产量
Yield/(kg·hm−2)单价
Unit Price/(Yuan·kg-1)效益
Benefit/(元·hm−2)单作花生(泉花557) Peanutmonoculture (Quanhua 557) 3937.50 10.00 39375.00 单作玉米(雪甜7401) Corn monoculture (Xuetian 7401) 9012.00 5.00 45060.00 间作花生(泉花557) Intercropping peanut (Quanhua 557) 1900.50 10.00 48217.50 间作玉米(雪甜7401) Intercropping corn (Xuetian 7401) 5842.50 5.00 -
[1] 高砚亮, 孙占祥, 白伟, 等. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响 [J]. 中国农业科学, 2017, 50(19):3702−3713. doi: 10.3864/j.issn.0578-1752.2017.19.007GAO Y L, SUN Z X, BAI W, et al. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning Province [J]. Scientia Agricultura Sinica, 2017, 50(19): 3702−3713.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.19.007 [2] 郝娜, 武志海, 张立祯, 等. 向日葵与蚕豆和马铃薯间作对作物产量和水分利用效率的影响 [J]. 吉林农业大学学报, 2018, 40(6):666−674.HAO N, WU Z H, ZHANG L Z, et al. Effects of sunflower intercropping with fababean and potato on crop yield and water use efficiency [J]. Journal of Jilin Agricultural University, 2018, 40(6): 666−674.(in Chinese) [3] 张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响 [J]. 草业学报, 2018, 27(10):15−22. doi: 10.11686/cyxb2017475ZHANG D, LONG H Y, JIN J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression [J]. Acta Prataculturae Sinica, 2018, 27(10): 15−22.(in Chinese) doi: 10.11686/cyxb2017475 [4] 耿广东, 王忠平, 冯道友, 等. 玉米与姜间作对土壤微生物和酶活性的影响 [J]. 土壤通报, 2009, 40(5):1104−1106.GENG G D, WANG Z P, FENG D Y, et al. Effects of maize and ginger intercropping on the soil microorganisms and enzyme activities [J]. Chinese Journal of Soil Science, 2009, 40(5): 1104−1106.(in Chinese) [5] 章铁, 刘秀清, 孙晓莉. 栗茶间作模式对土壤酶活性和土壤养分的影响 [J]. 中国农学通报, 2008, 24(4):265−268.ZHANG T, LIU X Q, SUN X L. Effect of intercropping pattern of chestnut with tea on soil enzyme activities and soil nutrients [J]. Chinese Agricultural Science Bulletin, 2008, 24(4): 265−268.(in Chinese) [6] 张智晖. 玉米/大豆间作模式对土壤酶活性及土壤养分的影响 [J]. 安徽农业科学, 2011, 39(16):9706−9707. doi: 10.3969/j.issn.0517-6611.2011.16.093ZHANG Z H. Effects of intercropping patterns for maize(Z. mays L. ) and soybean(g. max) on soil enzyme activity and soil nutrients [J]. Journal of Anhui Agricultural Sciences, 2011, 39(16): 9706−9707.(in Chinese) doi: 10.3969/j.issn.0517-6611.2011.16.093 [7] 刘均霞, 陆引罡, 远红伟, 等. 玉米、大豆间作对根际土壤微生物数量和酶活性的影响 [J]. 贵州农业科学, 2007, 35(2):60−61,64. doi: 10.3969/j.issn.1001-3601.2007.02.022LIU J X, LU Y G, YUAN H W, et al. Effects of intercrop maize and soybean on rhizosphere soil microbes and enzyme activity [J]. Guizhou Agricultural Sciences, 2007, 35(2): 60−61,64.(in Chinese) doi: 10.3969/j.issn.1001-3601.2007.02.022 [8] 刘均霞, 陆引罡, 远红伟, 等. 玉米/大豆间作条件下作物根系对氮素的吸收利用 [J]. 华北农学报, 2008, 23(1):173−175. doi: 10.7668/hbnxb.2008.01.038LIU J X, LU Y G, YUAN H W, et al. The roots of the crop usually absorb and utilize studying to nitrogen under the maize/soybean intercropping condition [J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 173−175.(in Chinese) doi: 10.7668/hbnxb.2008.01.038 [9] 刘均霞, 陆引罡, 远红伟, 等. 玉米/大豆间作条件下养分的高效利用机理 [J]. 山地农业生物学报, 2007, 26(2):105−109. doi: 10.3969/j.issn.1008-0457.2007.02.003LIU J X, LU Y G, YUAN H W, et al. Studies on the efficient use of nutrients in maize/soybean intercropping [J]. Journal of Mountain Agriculture and Biology, 2007, 26(2): 105−109.(in Chinese) doi: 10.3969/j.issn.1008-0457.2007.02.003 [10] TANG X M, ZHANG Y X, JIANG J, et al. Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil [J]. PeerJ, 2021, 9: e10880. doi: 10.7717/peerj.10880 [11] 黄鹏, 张恩和, 柴强. 施氮对新灌区不同间套种植模式产量及茬口养分特性的影响 [J]. 草业学报, 2001, 10(1):86−91. doi: 10.3321/j.issn:1004-5759.2001.01.012HUANG P, ZHANG E H, CHAI Q. Effect of N application on yield and stubble nutrient characteristics of intercropping patterens in new irrigation area of Gansu [J]. Acta Pratacultural Science, 2001, 10(1): 86−91.(in Chinese) doi: 10.3321/j.issn:1004-5759.2001.01.012 [12] 李隆, 杨思存, 孙建好, 等. 春小麦大豆间作条件下作物养分吸收积累动态的研究 [J]. 植物营养与肥料学报, 1999, 5(2):163−171. doi: 10.3321/j.issn:1008-505X.1999.02.010LI L, YANG S C, SUN J H, et al. Dynamic of nitrogen, phosphorus and potassiumuptake by intercropped species in thespringwheat/soybean intercropping [J]. Plant Natrition and Fertilizen Science, 1999, 5(2): 163−171.(in Chinese) doi: 10.3321/j.issn:1008-505X.1999.02.010 [13] 相云秋, 张甜, 邹晓霞, 等. 玉米花生间作对花生植株生长动态影响的研究 [J]. 农业科学, 2018(1):69−75.XIANG Y Q, ZHANG T, ZOU X X, et al. Effect of maize-peanut intercropping on peanut growth dynamics [J]. Hans Journal of Agricultural Sciences, 2018(1): 69−75.(in Chinese) [14] 焦念元, 李亚辉, 刘领, 等. 隔根对玉米Ⅱ花生间作光合特性与间作优势的影响 [J]. 植物生理学报, 2016, 52(6):886−894.JIAO N Y, LI Y H, LIU L, et al. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maizeⅡpeanut intercropping [J]. Plant Physiology Journal, 2016, 52(6): 886−894.(in Chinese) [15] INAL A, GUNES A, ZHANG F, et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots [J]. Plant Physiology and Biochemistry, 2007, 45(5): 350−356. doi: 10.1016/j.plaphy.2007.03.016 [16] 唐秀梅, 黄志鹏, 吴海宁, 等. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析 [J]. 生态环境学报, 2020, 29(2):223−230.TANG X M, HUANG Z P, WU H N, et al. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system [J]. Ecology and Environmental Sciences, 2020, 29(2): 223−230.(in Chinese) [17] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响 [J]. 应用生态学报, 2009, 20(7):1597−1602.ZHANG J E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents [J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1597−1602.(in Chinese) [18] 陈梦非, 王海新, 于国庆, 等. 风沙半干旱区花生玉米间作模式残茬防蚀效应研究 [J]. 辽宁农业科学, 2016(1):73−75. doi: 10.3969/j.issn.1002-1728.2016.01.019CHEN M F, WANG H X, YU G Q, et al. Sandstorm happened in peanut corn interplanting mode residues anticorrosive effect research [J]. Liaoning Agricultural Sciences, 2016(1): 73−75.(in Chinese) doi: 10.3969/j.issn.1002-1728.2016.01.019 [19] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1989. [20] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2008. [21] 王聪翔, 闻杰, 孙文涛, 等. 不同保护性耕作方式土壤酶动态变化的研究初报 [J]. 辽宁农业科学, 2005(6):16−18. doi: 10.3969/j.issn.1002-1728.2005.06.006WANG C X, WEN J, SUN W T, et al. Preliminary report about dynamic change of soil enzyme with different conservation tillages [J]. Liaoning Agricultural Science, 2005(6): 16−18.(in Chinese) doi: 10.3969/j.issn.1002-1728.2005.06.006 [22] 姜莉, 陈源泉, 隋鹏, 等. 不同间作形式对玉米根际土壤酶活性的影响 [J]. 中国农学通报, 2010, 26(9):326−330.JIANG L, CHEN Y Q, SUI P, et al. The rhizosphere soil enzyme activities of different corn intercropping system [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 326−330.(in Chinese) [23] 王晋, 强继业, 杨林楠,等. 玉米吸收磷素营养的代谢及分布 [J]. 西南农业大学学报, 2002, 24(2):159−160. doi: 10.3969/j.issn.1673-9868.2002.02.018WANG J, QIANG J Y, YANG L N, et al. Metabolism and distribution of p in maize plants [J]. Journal of Southwest Agricultural University, 2002, 24(2): 159−160.(in Chinese) doi: 10.3969/j.issn.1673-9868.2002.02.018 [24] 乔月静, 郭来春, 葛军勇, 等. 燕麦与豆科作物间作对土壤酶活和微生物量的影响 [J]. 甘肃农业大学学报, 2020, 55(3):54−61.QIAO Y J, GUO L C, GE J Y, et al. Effects of oat-legume intercropping on soil enzyme activities and abundance of soil microbe [J]. Journal of Gansu Agricultural University, 2020, 55(3): 54−61.(in Chinese) [25] 王庆宇, 李立军, 阮慧, 等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响 [J]. 干旱地区农业研究, 2019, 37(2):179−184. doi: 10.7606/j.issn.1000-7601.2019.02.26WANG Q Y, LI L J, RUAN H, et al. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land [J]. Agricultural Research in the Arid Areas, 2019, 37(2): 179−184.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.02.26 [26] 马忠明, 杜少平, 王平, 等. 长期定位施肥对小麦玉米间作土壤酶活性的影响 [J]. 核农学报, 2011, 25(4):796−801,823.MA Z M, DU S P, WANG P, et al. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils [J]. Journal of Nuclear Agricultural Sciences, 2011, 25(4): 796−801,823.(in Chinese) [27] 山东省花生研究所. 中国花生栽培学[M]. 上海: 上海科学技术出版社, 1982. [28] 杨瑞, 刘帅, 王紫泉, 等. 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨 [J]. 土壤学报, 2016, 53(4):1037−1046.YANG R, LIU S, WANG Z Q, et al. Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling Mountain [J]. Acta Pedologica Sinica, 2016, 53(4): 1037−1046.(in Chinese) [29] 王福军, 张明园, 张海林, 等. 耕作措施对华北夏玉米田土壤温度和酶活性的影响 [J]. 生态环境学报, 2012, 21(5):848−852. doi: 10.3969/j.issn.1674-5906.2012.05.011WANG F J, ZHANG M Y, ZHANG H L, et al. Soil temperature dynamics and enzyme activities as influenced by tillage in North China [J]. Ecology and Environmental Sciences, 2012, 21(5): 848−852.(in Chinese) doi: 10.3969/j.issn.1674-5906.2012.05.011 [30] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响 [J]. 作物杂志, 2014(5):55−58.SHEN X F, FANG Y, DONG Z X, et al. Effects of sugarcane/peanut intercropping on soil microbes and soil enzyme activities [J]. Crops, 2014(5): 55−58.(in Chinese) [31] 王克林, 黄月, 孙学凯, 等. 辽北地区杨树-玉米间作对土壤水分和养分含量的影响 [J]. 生态学杂志, 2016, 35(9):2386−2392.WANG K L, HUANG Y, SUN X K, et al. Effects of poplar-maize intercropping on soil moisture and soil nutrient contents in northern Liaoning of China [J]. Chinese Journal of Ecology, 2016, 35(9): 2386−2392.(in Chinese) [32] 刘亚军, 李越, 马琨, 等. 马铃薯与蚕豆、荞麦间作对土壤的影响 [J]. 江苏农业科学, 2018, 46(21):79−83.LIU Y J, LI Y, MA K, et al. Effects of potato intercropping with broad bean and buckwheat on soil [J]. Jiangsu Agricultural Sciences, 2018, 46(21): 79−83.(in Chinese) [33] 王鹏, 祝丽香, 陈香香, 等. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响 [J]. 植物营养与肥料学报, 2018, 24(3):668−675. doi: 10.11674/zwyf.17325WANG P, ZHU L X, CHEN X X, et al. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 668−675.(in Chinese) doi: 10.11674/zwyf.17325 [34] TANG X M, ZHONG R C, JIANG J, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents [J]. BMC Biotechnology, 2020, 20(1): 13. doi: 10.1186/s12896-020-00606-1 [35] 莫晶, 闫文德, 刘曙光, 等. 油茶-花生间作土壤酶活性与养分的关系 [J]. 中南林业科技大学学报, 2017, 37(6):89−95.MO J, YAN W D, LIU S G, et al. Soil enzyme activities and their relations with soil fertility in Camellia oleifera peanut intercropping [J]. Journal of Central South University of Forestry & Technology, 2017, 37(6): 89−95.(in Chinese) [36] 张艳, 郭书亚, 尚赏, 等. 甘薯/玉米不同间作方式对土壤养分、酶活性及作物产量的影响 [J]. 山西农业科学, 2020, 48(8):1234−1238. doi: 10.3969/j.issn.1002-2481.2020.08.15ZHANG Y, GUO S Y, SHANG S, et al. Effects of different intercropping methods of sweet potato/corn on soil nutrients, enzyme activity and crop yield [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1234−1238.(in Chinese) doi: 10.3969/j.issn.1002-2481.2020.08.15 [37] TIAN J H, TANG M T, XU X, et al. Soybean (Glycine max (L. ) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum) [J]. BiologyandFertility of Soils, 2020, 56(7): 1063−1075. [38] EHRMANN J, RITZ K. Plant: soil interactions in temperate multi-cropping production systems [J]. Plant and Soil, 2014, 376(1/2): 1−29.