Crop Yield, Rhizosphere Enzyme Activity, and Soil Fertility as Affected by Peanut/Maize Intercropping
-
摘要:目的 研究花生玉米间作对土壤酶活性、养分及作物产量的影响。方法 采用大田试验的方法,以泉花557及雪甜7401为材料,在不同生育时期,测定花生单作、玉米单作和花生玉米间作根际土壤养分含量和酶活性的变化规律,并进行相关性分析。结果 (1)在花生开花下针期和结荚期,花生玉米间作处理作物根际土壤脲酶活性分别比花生单作提高4.7%和5.0%,分别比玉米单作提高了2.6%和4.3%。(2)在花生苗期、开花下针期及花生成熟期,间作处理作物根际土壤酸性磷酸酶活性分别比花生单作提高8.0%、13.0%和34.7%,分别比玉米单作提高11.1%、19.6%和6.4%。(3)在花生苗期、开花下针期、结荚期及花生成熟期,花生玉米间作处理作物根际土壤蔗糖酶活性分别比花生单作提高1.5%、21.5%、11.2%和6.4%,分别比玉米单作提高了46.4%、33.8%、27.3%和11.1%。(4)在花生成熟期时,间作根区土壤的碱解氮和速效钾含量分别比玉米单作提高15.11%和5.66%,碱解氮、有效磷和速效钾含量分别比花生单作提高了3.42%、13.17%和11.39%。(5)相关性分析结果表明,在花生开花下针期,碱解氮与酸性磷酸酶、蔗糖酶存在显著正相关关系(P<0.05),有效磷与酸性磷酸酶、蔗糖酶存在显著正相关关系(P<0.05);在花生结荚期,碱解氮与蔗糖酶存在显著正相关关系(P<0.05);速效钾与酸性磷酸酶存在显著正相关关系(P<0.05);在花生成熟期,速效钾与过氧化氢酶存在显著正相关关系(P<0.05)。(6)花生玉米间作的经济收益为48 217.50 元·hm−2,分别比花生单作和玉米单作的收益增加8 842.50 元·hm−2和3 157.50 元·hm−2。结论 花生玉米间作可以改善两种作物根际土壤酶活性和养分状况,并能提高经济效益。Abstract:Objective Effects of peanut/maize intercropping on crop yield, rhizosphere enzyme activity, and nutrients in soil were studied.Method In a field experiment, Quanhua 557 peanut and Xuetian 7401 maize plants were cultivated either separately or under intercropping. The resulting crop yields as well as the nutrient content and enzyme activity in the rhizosphere soils were monitored at different growth stages of peanut monoculture, maize monoculture and peanut/maize intercropping for a correlation analysis.Result (1) In comparison with monoculture, peanut intercropped with maize raised the rhizosphere urease activity by 4.7% at peanut flowering stage, and by 5.0% at pod setting stage. For maize, the increases at the stages were 2.6% and 4.3%, respectively. (2) During seedling, flowering/needle setting, and maturation of the peanut plants, the acid phosphatase activities in soil were 8.0%, 13.0%, and 34.7%, respectively, higher under intercropping than monoculture. For maize, the activities rose by 11.1%, 19.6%, and 6.4%, respectively. (3) In the seedling, flowering/needle setting, pod setting, and maturation of peanut plants, the invertase activity in soil increased 1.5%, 21.5%, 11.2%, and 6.4%, respectively, by the intercropping. In those stages of maize plants, the increases were 46.4%, 33.8%, 27.3%, and 11.1%, respectively. (4) At peanut maturation, the contents of alkali hydrolyzable nitrogen and available potassium in the intercropped rhizosphere soil were 15.11% and 5.66%, respectively, higher than those of maize monoculture, while the contents of alkali hydrolyzable nitrogen, available phosphorus, and available potassium 3.42%, 13.17%, and 11.39%, respectively, higher than those of monoculture. (5) A significant correlation existed between the alkali hydrolyzable nitrogen and the activities of acid phosphatase and sucrase, as well as between the available phosphorus and the activities of acid phosphatase and sucrase, in soil when the peanut plants were flowering and needle setting (P<0.05). At the pod setting stage, it was one between the alkali hydrolyzable nitrogen and the invertase activity (P<0.05), and another between the available potassium and the acid phosphatase (P<0.05). At maturity of peanut, available potassium in the rhizosphere soil correlated significantly with catalase activity (P<0.05). (6) The intercropping generated 48 217.50 yuan·hm−2 in revenue, which was 8 842.50 yuan·hm−2 more than the peanut monoculture or 3 157.50 yuan·hm−2 more than the maize monoculture.Conclusion The peanut/maize intercropping significantly increased the enzyme activity and nutrient contents in the rhizosphere soil as well as the economic return over monoculture of either crop.
-
Keywords:
- Peanuts /
- maize /
- intercropping /
- enzyme activity /
- nutrient
-
0. 引言
【研究意义】国兰(Chinese Cymbidium)是中国传统兰花的统称,为兰科(Orchidaceae)兰属(Cymbidium)植物,包括春兰(C. goeringii)、蕙兰(C. faberi)、建兰(C. ensifolium)、墨兰(C. sinense)、寒兰(C.kanran)等,其味幽香,花色素雅,花姿优美,观赏和经济价值极高[1]。目前,种质资源缺乏是影响中国兰产业发展的重要因素之一[2],而兰科植物杂交范围很宽,种、属间均可杂交,且存在较大变异性,中间类型多,种的界限不清晰,加大了兰科植物研究的难度[3]。因此,通过分子生物学手段,开展稳定可靠的品种鉴定技术及分类学研究是非常必要的。【前人研究进展】由于分子标记与传统应用的常规遗传标记相比具有诸多优点,目前RAPD、AFLP、ISSR、SRAP等标记在兰花遗传育种中已得到广泛应用。江亚雯等[4]采用ISSR分子标记对江西省主要山脉12个野生寒兰居群进行遗传多样性和群体遗传结构研究;王晓英等[5]采用AFLP技术对51个春兰品种进行了遗传多样性分析;胡薇等[6]利用RAPD标记分析了38个建兰品种的遗传多样性和亲缘关系。EST-SSR是近年发展起来的基于EST数据库开发的新型分子标记,在资源鉴定、遗传作图、遗传多样性、基因发掘等研究中开发潜力巨大[7],但有关EST-SSR标记在国兰中的研究报道还较少见。【本研究切入点】由于EST-SSR标记来自于相对保守的转录组数据,故在物种间有较好的通用性[8-11],杂交兰是由国兰和大花蕙兰杂交选育成的兰花新品种,从杂交兰的EST-SSR中寻找适用于国兰的分子标记引物,不仅可以减少国兰引物的合成成本,丰富分子标记数量,也提高了杂交兰EST-SSR标记的利用价值。【拟解决的关键问题】本研究以44份国兰品种为材料,从杂交兰EST-SSR引物中筛选出适用于国兰的候选引物,为国兰寻找新的分子标记,并用这些新标记分析国兰的种间遗传多样性,以期为国兰种质鉴定、遗传多样性分析、分子标记辅助育种及种质资源合理利用等提供更丰富的标记资源。
1. 材料与方法
1.1 试验材料
供试材料为包括建兰、春兰、墨兰在内的44份国兰品种(表1),上述材料均取自福建省农业科学院作物研究所花卉种质资源圃,分别取其新鲜叶片,保存于−80℃条件下备用。
表 1 国兰供试材料信息Table 1. Information on Chinese cymbidiumcultivars 编号
No.品种名
Variety name种类
Species1 锦旗 Jinqi 建兰 C. ensifolium 2 四季玉妃 Sijiyufei 建兰 C. ensifolium 3 四季虎斑 Sijihuban 建兰 C. ensifolium 4 宝岛仙女 Baodaoxiannv 建兰 C. ensifolium 5 市长红 Shizhanghong 建兰 C. ensifolium 6 素君荷 Sujunhe 建兰 C. ensifolium 7 新品荷 Xinpinhe 建兰 C. ensifolium 8 红荷冠 Hongheguan 建兰 C. ensifolium 9 花叶建兰 Huayejianlan 建兰 C. ensifolium 10 春剑大富贵 Chunjiandafugui 春剑 C. longibractium 11 红荷梅 Honghemei 春兰 C. goeringii 12 红荷 Honghe 春兰 C. goeringii 13 碧龙玉素 Bilongyusu 莲瓣兰 C. lianpan 14 碧玉奇素 Biyuqisu 莲瓣兰 C. lianpan 15 晃辉 Huanghui 建兰 C. ensifolium 16 大唐盛世 Datangshengshi 春兰 C. goeringii×莲瓣兰 C. lianpan 17 瑞梅 Ruimei 春兰 C. goeringii 18 高山春色 Gaoshanchunse 建兰 C. ensifolium 19 国色天香 Guosetianxiang 建兰 C. ensifolium 20 铁骨素梅 Tiegusumei 建兰 C. ensifolium 21 铁金刚 Tiejingang 建兰 C. ensifolium 22 马耳 Maer 建兰 C. ensifolium 23 红梅 Hongmei 建兰 C. ensifolium 24 素心爪 Suxinzhua 建兰 C. ensifolium 25 地荷 Dihe 建兰 C. ensifolium 26 金丝马尾爪 Jinsimaweizhua 建兰 C. ensifolium 27 金针 Jinzhen 建兰 C. ensifolium 28 桃娇 Taojiao 建兰 C. ensifolium 29 小桃红 Xiaotaohong 建兰 C. ensifolium 30 萨摩锦 Samojin 建兰 C. ensifolium 31 青山玉泉 Qingshanyuquan 建兰 c. ensifolium 32 凤 Feng 建兰 c. ensifolium 33 丹霞建 Danxiajian 建兰 C. ensifolium 34 大凤素 Dafengsu 建兰 C. ensifolium 35 达摩爪 Damozhua 墨兰 C. sinense 36 龙梅 Longmei 墨兰 C. sinense 37 四季达摩 Sijidamo 墨兰 C. sinense 38 红宝石 Hongbaoshi 墨兰 C. sinense 39 玉兰蔻 Yulankou 墨兰 C. sinense 40 贵夫人 Guifuren 墨兰 C. sinense 41 黄荷梅 Huanghemei 春兰 C. goeringii 42 金边报岁兰 Jinbianbaosuilan 墨兰 C. sinense 43 银托 Yintuo 墨兰 C. sinense 44 企黑 Qihei 墨兰 C. sinense 1.2 DNA提取及EST-SSR-PCR扩增
采用改良CTAB法进行国兰叶片总DNA的提取,获得的总DNA经1%琼脂糖凝胶电泳检测其完整性,并利用分光光度计法检测其浓度,稀释至统一浓度后,将产物置于−20℃条件下保存备用。基于本课题组杂交兰转录组测序获得的EST-SSR标记引物,随机选取240对引物用于国兰PCR扩增。PCR反应体系为25 μL,包括模板DNA(100 ng·μL−1)1.0 μL,上、下游引物(10 μmol·L−1)各1.0 μL,10×Buffer(含Mg2+)2.5 μL,dNTPs(2.5 mmol·L−1)2.0 μL,Taq聚合酶(5 U·μL−1)0.25 μL,ddH2O 17.25 μL。PCR扩增程序为:94℃预变性4 min;94℃变性30 s,48~54℃退火30 s,72℃延伸45 s,共35个循环;72℃延伸10 min,4℃保存。PCR扩增产物先采用1.5%琼脂糖凝胶电泳检测,舍去无条带或是效果不理想的引物,将条带清晰、有目标片段的产物利用12%聚丙烯酰胺凝胶电泳进行分离。
1.3 数据分析
统计并记录电泳图谱中每一样品扩增所产生的DNA条带数,计算总条带数、多态性条带数、各引物的多态性比率和多态性信息量(PIC)及条带大小等。对记录的DNA条带构建原始数据矩阵,将相同位置上清晰出现的条带记为1,同一位置无条带或是弱带的则记为0。利用NTSYS-pc 2.10e软件进行聚类分析,并绘制供试国兰种质资源聚类图。
2. 结果与分析
2.1 杂交兰EST-SSR标记在国兰上的通用性
随机选择供试材料中的1份春兰、1份建兰、1份墨兰材料进行240对EST-SSR引物的PCR扩增。结果表明,163对引物在春兰中能扩增出稳定清晰的带型(有效扩增率67.92%),159对引物在建兰中能扩增出稳定清晰的带型(有效扩增率66.25%),171对引物在墨兰中能扩增出稳定清晰的带型(有效扩增率71.25%)。
2.2 EST-SSR标记的多态性分析
从137对能同时在春兰、建兰、墨兰扩增出带型的引物中,排查无差异条带,选取17对引物对44份国兰种质资源进行扩增及多态性评价,以明确选取引物对供试国兰品种的可用性。结果发现,其中有10对引物的扩增条带清晰且具有多态性位点(表2),有效扩增率为58.82%。图1为引物CYM278的扩增结果。对筛选出来的10对杂交兰EST-SSR引物进行多态性分析发现,10对引物共扩增出52个条带,其中多态性条带有48个,多态率为92.31%,各引物的多态性条带数为3~9个,引物CYM81扩增出的多态性条带数最多。对各引物的多态性信息含量分析显示,多态性信息含量分布范围为0.504~0.850,平均值为0.686,10个标记均为高度多态性位点(0.5≤PIC)。表明开发的引物具有较高的质量和多态信息,可用于国兰遗传资源的评价。
表 2 杂交兰EST-SSR标记多态性分析Table 2. Information on Cymbidium hybrid EST-SSR primer pairs引物名
Primer引物序列
Primer sequence长度
Length/bp重复单元
Repeat motifs总条带
Total band多态性条带
Polymorphism band多态性比率
Polymorphism percentage/%多态性信息含量
Polymorphism information contentCYM81 5′-CTTCCTTCTCTGCTGCCATT-3′
5′-AAACAGAATCCGGCTCACAC-3′181 (CT)8 9 9 100.00 0.850 CYM107 5′-CGGTGGGATAAGGCGTATAA-3′
5′-TTGATTCCGGCAATTAAAGC-3′201 (GA)8 6 6 100.00 0.765 CYM108 5′-AAAGATGACACTGTGCGTCG-3′
5′-CCTCGCCCACTCTAACTTGA-3′189 (GA)8 7 6 85.71 0.807 CYM128 5′-ATGCAAGGGCGTACAAAAAC-3′
5′-GAATCTCCGATCCCGTAACA-3′239 (GT)8 5 5 100.00 0.692 CYM153 5′-CGAGCGAGATATGTGGATGA-3′
5′-GGCATCCTTTGTACAATTTTGA-3′243 (TA)8 5 5 100.00 0.744 CYM165 5′-CCATCGCAATGTCTTTCCTT-3′
5′-AACAATGGGGTCACTCCCTA-3′183 (TA)6 3 3 100.00 0.606 CYM174 5′-CAAGATCAGCTGGCATTGAA-3′
5′-TTGGACAACCTGTCTCTATCCA-3′270 (TC)9 4 3 75.00 0.504 CYM270 5′-ATACCCACTGCCATAGCTGC-3′
5′-GGATTACGTCATCGGAGGAA-3′223 (ACC)5 4 3 75.00 0.652 CYM278 5′-AGGCACATAGGAGAGCCTGA-3′
5′-CTGAGCAGGAACTTGAAGCC-3′269 (AGA)6 4 3 75.00 0.570 CYM287 5′-CATCAACGCGGTGTATGAAC-3′
5′-CCGAGATTTGAGTGTCGGAT-3′198 (AGC)8 5 5 100.00 0.669 2.3 杂交兰40个品种聚类分析
根据10对引物扩增的多态性EST-SSRs建立的0,1型数据,利用NTSYS-pc 2.10e软件,构建国兰44个品种的聚类图(图2)。44个国兰品种间的遗传距离变化在0.02~0.49,其中,凤和青山玉泉品种的亲缘关系最近。在遗传距离为0.43处,44份国兰品种被划分为4大类群:第Ⅰ类群包括9个品种,有:锦旗、四季虎斑、四季玉妃、市长红和花叶建兰等,均为建兰品种,且多为红色系花;第Ⅱ类群包括18个品种,有:铁骨素梅、铁金刚、素心爪、金丝马尾爪、金针、桃娇、小桃红、大凤素等,包含了供试材料中的大部分建兰品种;第Ⅲ类群中有8个品种,如:红荷梅、红荷、黄荷梅、瑞梅等春兰品种,还包括春剑品种:春剑大富贵,莲瓣兰品种:碧龙玉素和碧玉奇素等;第Ⅳ类群中有9个品种,如:四季达摩、达摩爪、企黑等,均为墨兰品种。
3. 讨论与结论
种质资源是开展育种工作的材料基础,对种质资源的鉴定、评价工作是推动资源进一步开发利用的前提。分子标记技术是目前快速鉴定物种间亲缘关系的重要手段之一,具有多态性高、共显性等特点,已成功应用于兰科植物遗传多样性研究中。李丽辉等[12]利用RAPD和ISSR分子标记技术,对7种国兰资源进行遗传多样性和亲缘关系分析,研究结果表明RAPD和ISSR这2种分子标记可以在分子水平上反映遗传资源的遗传多样性。张亚楠等[13]开发了寒兰EST-SSR标记,并将其应用于15个不同地区寒兰遗传多样性的分析,结果表明,设计的SSR引物可用于寒兰的遗传研究。牛田等[14]利用SRAP分子标记对包括春兰品种在内的47份材料进行遗传多样性分析,较好地揭示了供试材料亲缘关系的远近,为春兰各品种间的分类和杂交亲本的选择提供重要理论依据。虽然前人利用分子标记对国兰遗传多样性、遗传图谱构建的研究取得了一定进展,但相对于小麦[15]、白菜[16]等植物,国兰的标记数目还较少。
随着物种参考序列的增多,基于基因组和转录组序列,众多植物的EST-SSR分子标记引物被开发,有关EST-SSR标记的通用性研究也有报道。在思茅松EST-SSR标记对马尾松、高山松、油松和云南松的通用率为88.89%[17];48对小麦EST-SSR引物中,36对在7种有潜力的禾本科能源植物中具可转移性,可转移率为75.0%[18];木薯EST-SSR在麻疯树中的通用性比例为55.85%[19]。基于EST-SSR标记物种间通用性高这一优点,本研究利用杂交兰的240对EST-SSR引物对春兰、建兰、墨兰进行PCR扩增,引物的通用性比例分别为67.92%、66.25%和71.25%,说明杂交兰EST-SSR引物在国兰中有较好的通用性,与其他植物的通用性研究结果较为相似。本研究还发现了137个引物对可以应用于国兰中,为国兰增加了新的分子标记。
本研究进一步利用筛选出的10对杂交兰EST-SSR引物对44份国兰品种资源的遗传多样性进行分析,10对引物的多态性比率为92.31%,多态性信息含量(PIC)均值为0.686,均属于高PIC等级,表明开发出的EST-SSR多态性程度相对较高。聚类图中将44份国兰品种分为4大类群,第Ⅰ类群和第Ⅱ聚类群中,均为建兰品种;第Ⅲ类群中包括春兰、春剑、莲瓣兰等品种;第Ⅳ类群为墨兰品种;分类结果与传统的植物学分类相吻合,很好地将建兰、墨兰和其他国兰品种区分开,这一研究结果与蒋彧等[20]对24个国兰样品的聚类结果相近。本研究结果说明供试的国兰品种间具有较丰富的遗传多样性,杂交兰EST-SSR标记可以较准确地将44份国兰种质资源进行聚类,表明利用杂交兰EST-SSR标记进行国兰种质资源遗传多样性分析的研究是可行的。
-
图 2 不同时期花生玉米间作对土壤脲酶活性影响
注:大写字母不同表示差异极显著(P<0.01),小写字母不同表示差异显著(P<0.05)。显著性分析为按各时期分析,下图同。
Figure 2. Effect of peanut/maize intercropping at different stages of plant growth on soil urease activity
Note: Different capital letters mean significant difference (P<0.01), and different lowercase letters mean significant difference (P<0.05). The significance analysis is based on the same period, and the following fig is the same.
表 1 不同时期土壤养分与酶活性的相关性分析
Table 1 Correlation between soil nutrients and enzyme activities at different stages of plant growth
时期
Stage项目
Item脲酶
Soil urease activity酸性磷酸酶
Soil acid phosphataseactivity蔗糖酶
Soil invertase activity过氧化氢酶
Soil catalase activity花生苗期
Peanut seedling stage碱解氮
Alkali hydrolyzable nitrogen−0.825 −0.176 −0.801 0.809 有效磷
Available phosphorus0.932 0.913 0.946 0.031 速效钾
Available potassium−0.731 0.027 −0.702 0.888 花生开花下针期
Flowering and needle
setting stage of peanut碱解氮
Alkali hydrolyzable nitrogen0.907 0.956* 0.954* 0.947 有效磷
Available phosphorus0.852 0.984* 0.983* 0.903 速效钾
Available potassium−0.562 0.135 0.140 −0.469 花生结荚期
Peanut pod setting stage碱解氮
Alkali hydrolyzable nitrogen0.546 0.826 0.952* −0.133 有效磷
Available phosphorus0.529 0.837 0.946 −0.153 速效钾
Available potassium0.232 0.968* 0.794 −0.459 花生成熟期
Peanut maturity碱解氮
Alkali hydrolyzable nitrogen−0.884 −0.054 0.923 0.454 有效磷
Available phosphorus0.835 0.901 −0.105 0.563 速效钾
Available potassium0.212 0.947 0.621 0.980* *为P<0.05,**为P<0.01。
*means P<0.05; **means P<0.01.表 2 花生玉米间作对产量及经济效益的影响
Table 2 Effects of peanut/maize intercropping on crop yield and economic benefits
处理
Treatment产量
Yield/(kg·hm−2)单价
Unit Price/(Yuan·kg-1)效益
Benefit/(元·hm−2)单作花生(泉花557) Peanutmonoculture (Quanhua 557) 3937.50 10.00 39375.00 单作玉米(雪甜7401) Corn monoculture (Xuetian 7401) 9012.00 5.00 45060.00 间作花生(泉花557) Intercropping peanut (Quanhua 557) 1900.50 10.00 48217.50 间作玉米(雪甜7401) Intercropping corn (Xuetian 7401) 5842.50 5.00 -
[1] 高砚亮, 孙占祥, 白伟, 等. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响 [J]. 中国农业科学, 2017, 50(19):3702−3713. DOI: 10.3864/j.issn.0578-1752.2017.19.007 GAO Y L, SUN Z X, BAI W, et al. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning Province [J]. Scientia Agricultura Sinica, 2017, 50(19): 3702−3713.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2017.19.007
[2] 郝娜, 武志海, 张立祯, 等. 向日葵与蚕豆和马铃薯间作对作物产量和水分利用效率的影响 [J]. 吉林农业大学学报, 2018, 40(6):666−674. HAO N, WU Z H, ZHANG L Z, et al. Effects of sunflower intercropping with fababean and potato on crop yield and water use efficiency [J]. Journal of Jilin Agricultural University, 2018, 40(6): 666−674.(in Chinese)
[3] 张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响 [J]. 草业学报, 2018, 27(10):15−22. DOI: 10.11686/cyxb2017475 ZHANG D, LONG H Y, JIN J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression [J]. Acta Prataculturae Sinica, 2018, 27(10): 15−22.(in Chinese) DOI: 10.11686/cyxb2017475
[4] 耿广东, 王忠平, 冯道友, 等. 玉米与姜间作对土壤微生物和酶活性的影响 [J]. 土壤通报, 2009, 40(5):1104−1106. GENG G D, WANG Z P, FENG D Y, et al. Effects of maize and ginger intercropping on the soil microorganisms and enzyme activities [J]. Chinese Journal of Soil Science, 2009, 40(5): 1104−1106.(in Chinese)
[5] 章铁, 刘秀清, 孙晓莉. 栗茶间作模式对土壤酶活性和土壤养分的影响 [J]. 中国农学通报, 2008, 24(4):265−268. ZHANG T, LIU X Q, SUN X L. Effect of intercropping pattern of chestnut with tea on soil enzyme activities and soil nutrients [J]. Chinese Agricultural Science Bulletin, 2008, 24(4): 265−268.(in Chinese)
[6] 张智晖. 玉米/大豆间作模式对土壤酶活性及土壤养分的影响 [J]. 安徽农业科学, 2011, 39(16):9706−9707. DOI: 10.3969/j.issn.0517-6611.2011.16.093 ZHANG Z H. Effects of intercropping patterns for maize(Z. mays L. ) and soybean(g. max) on soil enzyme activity and soil nutrients [J]. Journal of Anhui Agricultural Sciences, 2011, 39(16): 9706−9707.(in Chinese) DOI: 10.3969/j.issn.0517-6611.2011.16.093
[7] 刘均霞, 陆引罡, 远红伟, 等. 玉米、大豆间作对根际土壤微生物数量和酶活性的影响 [J]. 贵州农业科学, 2007, 35(2):60−61,64. DOI: 10.3969/j.issn.1001-3601.2007.02.022 LIU J X, LU Y G, YUAN H W, et al. Effects of intercrop maize and soybean on rhizosphere soil microbes and enzyme activity [J]. Guizhou Agricultural Sciences, 2007, 35(2): 60−61,64.(in Chinese) DOI: 10.3969/j.issn.1001-3601.2007.02.022
[8] 刘均霞, 陆引罡, 远红伟, 等. 玉米/大豆间作条件下作物根系对氮素的吸收利用 [J]. 华北农学报, 2008, 23(1):173−175. DOI: 10.7668/hbnxb.2008.01.038 LIU J X, LU Y G, YUAN H W, et al. The roots of the crop usually absorb and utilize studying to nitrogen under the maize/soybean intercropping condition [J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 173−175.(in Chinese) DOI: 10.7668/hbnxb.2008.01.038
[9] 刘均霞, 陆引罡, 远红伟, 等. 玉米/大豆间作条件下养分的高效利用机理 [J]. 山地农业生物学报, 2007, 26(2):105−109. DOI: 10.3969/j.issn.1008-0457.2007.02.003 LIU J X, LU Y G, YUAN H W, et al. Studies on the efficient use of nutrients in maize/soybean intercropping [J]. Journal of Mountain Agriculture and Biology, 2007, 26(2): 105−109.(in Chinese) DOI: 10.3969/j.issn.1008-0457.2007.02.003
[10] TANG X M, ZHANG Y X, JIANG J, et al. Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil [J]. PeerJ, 2021, 9: e10880. DOI: 10.7717/peerj.10880
[11] 黄鹏, 张恩和, 柴强. 施氮对新灌区不同间套种植模式产量及茬口养分特性的影响 [J]. 草业学报, 2001, 10(1):86−91. DOI: 10.3321/j.issn:1004-5759.2001.01.012 HUANG P, ZHANG E H, CHAI Q. Effect of N application on yield and stubble nutrient characteristics of intercropping patterens in new irrigation area of Gansu [J]. Acta Pratacultural Science, 2001, 10(1): 86−91.(in Chinese) DOI: 10.3321/j.issn:1004-5759.2001.01.012
[12] 李隆, 杨思存, 孙建好, 等. 春小麦大豆间作条件下作物养分吸收积累动态的研究 [J]. 植物营养与肥料学报, 1999, 5(2):163−171. DOI: 10.3321/j.issn:1008-505X.1999.02.010 LI L, YANG S C, SUN J H, et al. Dynamic of nitrogen, phosphorus and potassiumuptake by intercropped species in thespringwheat/soybean intercropping [J]. Plant Natrition and Fertilizen Science, 1999, 5(2): 163−171.(in Chinese) DOI: 10.3321/j.issn:1008-505X.1999.02.010
[13] 相云秋, 张甜, 邹晓霞, 等. 玉米花生间作对花生植株生长动态影响的研究 [J]. 农业科学, 2018(1):69−75. XIANG Y Q, ZHANG T, ZOU X X, et al. Effect of maize-peanut intercropping on peanut growth dynamics [J]. Hans Journal of Agricultural Sciences, 2018(1): 69−75.(in Chinese)
[14] 焦念元, 李亚辉, 刘领, 等. 隔根对玉米Ⅱ花生间作光合特性与间作优势的影响 [J]. 植物生理学报, 2016, 52(6):886−894. JIAO N Y, LI Y H, LIU L, et al. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maizeⅡpeanut intercropping [J]. Plant Physiology Journal, 2016, 52(6): 886−894.(in Chinese)
[15] INAL A, GUNES A, ZHANG F, et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots [J]. Plant Physiology and Biochemistry, 2007, 45(5): 350−356. DOI: 10.1016/j.plaphy.2007.03.016
[16] 唐秀梅, 黄志鹏, 吴海宁, 等. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析 [J]. 生态环境学报, 2020, 29(2):223−230. TANG X M, HUANG Z P, WU H N, et al. Correlation and principal component analysis of the soil environmental factors in corn/peanut intercropping system [J]. Ecology and Environmental Sciences, 2020, 29(2): 223−230.(in Chinese)
[17] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响 [J]. 应用生态学报, 2009, 20(7):1597−1602. ZHANG J E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents [J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1597−1602.(in Chinese)
[18] 陈梦非, 王海新, 于国庆, 等. 风沙半干旱区花生玉米间作模式残茬防蚀效应研究 [J]. 辽宁农业科学, 2016(1):73−75. DOI: 10.3969/j.issn.1002-1728.2016.01.019 CHEN M F, WANG H X, YU G Q, et al. Sandstorm happened in peanut corn interplanting mode residues anticorrosive effect research [J]. Liaoning Agricultural Sciences, 2016(1): 73−75.(in Chinese) DOI: 10.3969/j.issn.1002-1728.2016.01.019
[19] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1989. [20] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2008. [21] 王聪翔, 闻杰, 孙文涛, 等. 不同保护性耕作方式土壤酶动态变化的研究初报 [J]. 辽宁农业科学, 2005(6):16−18. DOI: 10.3969/j.issn.1002-1728.2005.06.006 WANG C X, WEN J, SUN W T, et al. Preliminary report about dynamic change of soil enzyme with different conservation tillages [J]. Liaoning Agricultural Science, 2005(6): 16−18.(in Chinese) DOI: 10.3969/j.issn.1002-1728.2005.06.006
[22] 姜莉, 陈源泉, 隋鹏, 等. 不同间作形式对玉米根际土壤酶活性的影响 [J]. 中国农学通报, 2010, 26(9):326−330. JIANG L, CHEN Y Q, SUI P, et al. The rhizosphere soil enzyme activities of different corn intercropping system [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 326−330.(in Chinese)
[23] 王晋, 强继业, 杨林楠,等. 玉米吸收磷素营养的代谢及分布 [J]. 西南农业大学学报, 2002, 24(2):159−160. DOI: 10.3969/j.issn.1673-9868.2002.02.018 WANG J, QIANG J Y, YANG L N, et al. Metabolism and distribution of p in maize plants [J]. Journal of Southwest Agricultural University, 2002, 24(2): 159−160.(in Chinese) DOI: 10.3969/j.issn.1673-9868.2002.02.018
[24] 乔月静, 郭来春, 葛军勇, 等. 燕麦与豆科作物间作对土壤酶活和微生物量的影响 [J]. 甘肃农业大学学报, 2020, 55(3):54−61. QIAO Y J, GUO L C, GE J Y, et al. Effects of oat-legume intercropping on soil enzyme activities and abundance of soil microbe [J]. Journal of Gansu Agricultural University, 2020, 55(3): 54−61.(in Chinese)
[25] 王庆宇, 李立军, 阮慧, 等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响 [J]. 干旱地区农业研究, 2019, 37(2):179−184. DOI: 10.7606/j.issn.1000-7601.2019.02.26 WANG Q Y, LI L J, RUAN H, et al. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land [J]. Agricultural Research in the Arid Areas, 2019, 37(2): 179−184.(in Chinese) DOI: 10.7606/j.issn.1000-7601.2019.02.26
[26] 马忠明, 杜少平, 王平, 等. 长期定位施肥对小麦玉米间作土壤酶活性的影响 [J]. 核农学报, 2011, 25(4):796−801,823. MA Z M, DU S P, WANG P, et al. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils [J]. Journal of Nuclear Agricultural Sciences, 2011, 25(4): 796−801,823.(in Chinese)
[27] 山东省花生研究所. 中国花生栽培学[M]. 上海: 上海科学技术出版社, 1982. [28] 杨瑞, 刘帅, 王紫泉, 等. 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨 [J]. 土壤学报, 2016, 53(4):1037−1046. YANG R, LIU S, WANG Z Q, et al. Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling Mountain [J]. Acta Pedologica Sinica, 2016, 53(4): 1037−1046.(in Chinese)
[29] 王福军, 张明园, 张海林, 等. 耕作措施对华北夏玉米田土壤温度和酶活性的影响 [J]. 生态环境学报, 2012, 21(5):848−852. DOI: 10.3969/j.issn.1674-5906.2012.05.011 WANG F J, ZHANG M Y, ZHANG H L, et al. Soil temperature dynamics and enzyme activities as influenced by tillage in North China [J]. Ecology and Environmental Sciences, 2012, 21(5): 848−852.(in Chinese) DOI: 10.3969/j.issn.1674-5906.2012.05.011
[30] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响 [J]. 作物杂志, 2014(5):55−58. SHEN X F, FANG Y, DONG Z X, et al. Effects of sugarcane/peanut intercropping on soil microbes and soil enzyme activities [J]. Crops, 2014(5): 55−58.(in Chinese)
[31] 王克林, 黄月, 孙学凯, 等. 辽北地区杨树-玉米间作对土壤水分和养分含量的影响 [J]. 生态学杂志, 2016, 35(9):2386−2392. WANG K L, HUANG Y, SUN X K, et al. Effects of poplar-maize intercropping on soil moisture and soil nutrient contents in northern Liaoning of China [J]. Chinese Journal of Ecology, 2016, 35(9): 2386−2392.(in Chinese)
[32] 刘亚军, 李越, 马琨, 等. 马铃薯与蚕豆、荞麦间作对土壤的影响 [J]. 江苏农业科学, 2018, 46(21):79−83. LIU Y J, LI Y, MA K, et al. Effects of potato intercropping with broad bean and buckwheat on soil [J]. Jiangsu Agricultural Sciences, 2018, 46(21): 79−83.(in Chinese)
[33] 王鹏, 祝丽香, 陈香香, 等. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响 [J]. 植物营养与肥料学报, 2018, 24(3):668−675. DOI: 10.11674/zwyf.17325 WANG P, ZHU L X, CHEN X X, et al. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 668−675.(in Chinese) DOI: 10.11674/zwyf.17325
[34] TANG X M, ZHONG R C, JIANG J, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents [J]. BMC Biotechnology, 2020, 20(1): 13. DOI: 10.1186/s12896-020-00606-1
[35] 莫晶, 闫文德, 刘曙光, 等. 油茶-花生间作土壤酶活性与养分的关系 [J]. 中南林业科技大学学报, 2017, 37(6):89−95. MO J, YAN W D, LIU S G, et al. Soil enzyme activities and their relations with soil fertility in Camellia oleifera peanut intercropping [J]. Journal of Central South University of Forestry & Technology, 2017, 37(6): 89−95.(in Chinese)
[36] 张艳, 郭书亚, 尚赏, 等. 甘薯/玉米不同间作方式对土壤养分、酶活性及作物产量的影响 [J]. 山西农业科学, 2020, 48(8):1234−1238. DOI: 10.3969/j.issn.1002-2481.2020.08.15 ZHANG Y, GUO S Y, SHANG S, et al. Effects of different intercropping methods of sweet potato/corn on soil nutrients, enzyme activity and crop yield [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1234−1238.(in Chinese) DOI: 10.3969/j.issn.1002-2481.2020.08.15
[37] TIAN J H, TANG M T, XU X, et al. Soybean (Glycine max (L. ) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum) [J]. BiologyandFertility of Soils, 2020, 56(7): 1063−1075.
[38] EHRMANN J, RITZ K. Plant: soil interactions in temperate multi-cropping production systems [J]. Plant and Soil, 2014, 376(1/2): 1−29.
-
期刊类型引用(2)
1. 徐婉,林雅君,赵荘,周庄. 兰属植物资源与育种研究进展. 园艺学报. 2022(12): 2722-2742 . 百度学术
2. 王子玥,刘曼,刘凌云,常智慧. 苇状羊茅EST-SSR标记在草甸羊茅和多年生黑麦草的通用分析. 草地学报. 2021(09): 1900-1908 . 百度学术
其他类型引用(1)