• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

郑州市常绿树种滞尘能力与叶片生理结构的响应

贺丹, 汪安印, 李紫萱, 王翼飞, 李朝梅, 雷雅凯, 李永华, 董娜琳

贺丹,汪安印,李紫萱,等. 郑州市常绿树种滞尘能力与叶片生理结构的响应 [J]. 福建农业学报,2022,37(2):203−212. DOI: 10.19303/j.issn.1008-0384.2022.002.010
引用本文: 贺丹,汪安印,李紫萱,等. 郑州市常绿树种滞尘能力与叶片生理结构的响应 [J]. 福建农业学报,2022,37(2):203−212. DOI: 10.19303/j.issn.1008-0384.2022.002.010
HE D, WANG A Y, LI Z X, et al. Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city [J]. Fujian Journal of Agricultural Sciences,2022,37(2):203−212. DOI: 10.19303/j.issn.1008-0384.2022.002.010
Citation: HE D, WANG A Y, LI Z X, et al. Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city [J]. Fujian Journal of Agricultural Sciences,2022,37(2):203−212. DOI: 10.19303/j.issn.1008-0384.2022.002.010

郑州市常绿树种滞尘能力与叶片生理结构的响应

基金项目: 国家自然科学基金项目(31600579);河南省科技攻关项目(212102110185);河南省青年骨干教师资助项目(2020GGJS049)
详细信息
    作者简介:

    贺丹(1983–),女,博士,副教授,研究方向:风景园林植物应用(E-mail:dandan990111@163.com

    通讯作者:

    董娜琳(1987–),女,硕士,实验师,研究方向:风景园林规划与公共健康(E-mail:dongnalin@henau.edu.cn

  • 中图分类号: S 688

Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city

  • 摘要:
      目的  探究郑州市常绿树种的滞尘及综合抗污染能力。
      方法  以7种常见常绿树种为研究对象,应用分级滤膜过滤法测定其单位叶面积不同粒径(TSP、PM10、PM2.5)的颗粒物滞留量,并比较不同污染程度下各树种叶片的生理指标和叶表形态结构。
      结果  不同树种滞尘量差异显著,针叶树种单位叶面积滞尘量显著高于阔叶树种,针叶树种中圆柏的滞尘量高于雪松,阔叶树种中单位叶面积滞尘量最高为女贞,滞留量最低的为南天竹。大部分树种的叶绿素a、b含量在污染严重地区相对较低,丙二醛含量在污染严重地区相对较高,与该地区植物较强的滞尘能力相符,且树种的滞尘量与生理指标存在显著相关性。
      结论  植物吸附的颗粒物多集中在沟槽、中脉、气孔等有明显凹凸变化的区域,且随着污染程度的变化,其气孔大小和气孔密度发生变化,从而影响其滞尘能力。采用主成分分析法,得出树种抗污染综合能力从大到小依次为雪松、圆柏、女贞、石楠、大叶黄杨、海桐和南天竹。因此,今后在郑州进行城市绿化时,应优先选用雪松、圆柏这种综合抗污染能力较强的树种。
    Abstract:
      Objective   Dust retention of 7 typical species of evergreen trees in municipal Zhengzhou, Jiangsu was studied.
      Method  Deposit of dust falloff on leaves of the evergreen trees was collected by a 3-layer membrane filtration method. Physiological indicators and surface structure of the tree leaves in areas under varied degrees of atmospheric pollution were compared.
      Result   On a per unit leaf area basis, the dust retention of coniferous evergreens was significantly higher than that of broadleaf counterparts. Of the conifers, Sabina chinensis was higher in retaining dust than Cedrus deodara, while the broadleaf Ligustrum lucidum the highest and Nandina domestica the lowest. Most trees in severely polluted areas were relatively low on the contents of chlorophyll a and b but high on malondialdehyde, as the leaves tended to gather more dust. A significant correlation was also observed between the dust retention and physiological indicators of the tree leaves. Dust particles largely collected in the grooves, midribs, and stomata on a plant, and the size and density of the stomata could be affected by the worsened air pollution and so the dust retention. A principal component analysis on the pollution resistance of the evergreens placed the species in a descending order of C. deodara, S. chinensis, L. lucidum, Photinia serratifolia, Buxus megistophylla, Pittosporum tobira, and N. domestica.
      Conclusion   For an ecological-friendly urban landscaping in Zhengzhou, it would be more desirable to choose C. deodara and S. chinensis than the others.
  • 图  1   采样区域分布

    注:1、公园;2、道路;3、工厂。图5同。

    Figure  1.   Schematic distribution of sampling area

    Note: 1. park; 2. road; 3. factory. The same was applied in Fig.5.

    图  2   7种常绿树种在3个采样区滞尘量的比较

    注:不同小写字母表示在同一采样区下不同树种间差异显著(P<0.05);A、圆柏;B、雪松;C、女贞;D、石楠;E、大叶黄杨;F、海桐;G、南天竹。图3图4图5同。

    Figure  2.   Dust deposition on 7 species of evergreen in 3 sampling areas

    Note: Different lowercase letters indicate significant differences among different tree species in the same sampling area (P<0.05); A. Sabina chinensis. B. Cedrus deodara. C. Ligustrum lucidum. D. Photinia serratifolia. E. Buxus megistophylla. F. Pittosporum tobira. G. Nandina domestica. The same for Fig.3, 4, 5.

    图  3   7种常绿树种在3处采样区的叶绿素a、b以及丙二醛含量比较

    Figure  3.   Contents of chlorophyll a, chlorophyll b, and malondialdehyde of evergreens in 3 sampling areas

    图  4   7种常绿树种的叶面颗粒物分布

    注:箭头为不同植物叶面颗粒分布集中区域(×60倍)。

    Figure  4.   Distribution of particles fell on leaves of various species of evergreens

    Note: Arrows are the concentrated areas of leaf particles of different plants (×60 times).

    图  5   7种常绿树种在3处采样区的叶面气孔形态观察 (×1200倍)

    Figure  5.   Leaf stomata morphology of evergreens in 3 sampling areas (1200 ×)

    表  1   7种常绿树种在3处采样区的叶面气孔参数

    Table  1   Stomatal parameters of evergreens in 3 sampling area

    树种
    Tree species
    气孔形态
    Stomatal morphology
    采样区域
    Sampling area
    气孔密度
    Stomatal density/(个·mm−2)
    气孔长度
    Stomatal length/μm
    气孔宽度
    Stomatal width/μm
    圆柏 Sabina chinensis 长圆形 Long round 1 55.18±0.00 44.21±0.92 36.15±0.78
    2 55.18±0.00 42.37±0.30 32.60±0.39
    3 66.68±3.98 42.11±0.51 20.93±0.49
    雪松 Cedrus deodara 长圆形 Long round 1 27.59±0.00 59.28±0.91 38.67±0.30
    2 27.59±0.00 44.26±0.32 37.60±0.35
    3 27.59±0.00 31.98±1.16 31.27±0.75
    女贞 Ligustrum lucidum 卵圆形 Ovate 1 223.03±14.36 24.72±0.15 17.25±1.13
    2 236.82±3.98 24.41±0.22 13.72±1.07
    3 303.50±6.90 22.93±1.24 12.59±0.05
    石楠 Photinia serratifolia 圆形 Round 1 257.51±15.93 23.16±0.34 22.18±0.28
    2 425.36±14.36 20.23±0.32 17.35±1.30
    3 443.75±14.36 15.20±0.43 12.76±0.38
    大叶黄杨 Buxus megistophylla 圆形 Round 1 236.82±22.17 37.91±0.28 37.26±0.23
    2 239.12±7.96 26.83±0.13 25.89±1.01
    3 287.40±14.36 24.74±0.15 24.26±0.27
    海桐 Pittosporum tobira 圆形 Round 1 170.14±7.96 40.55±0.45 39.62±0.20
    2 271.31±21.07 32.50±0.43 30.92±0.06
    3 298.90±21.07 25.65±1.16 24.13±0.11
    南天竹 Nandina domestica 卵圆形 Ovate 1 377.07±31.86 19.91±0.31 18.66±0.31
    2 434.55±11.95 19.48±0.35 17.39±0.47
    3 448.35±20.69 15.76±0.09 14.61±0.37
    下载: 导出CSV

    表  2   树种、污染程度与气孔指标的方差分析

    Table  2   Variance analysis on tree species, pollution degree, and stoma index

    固定因子
    Fixed factor
    因变量
    Dependent variable
    Ⅲ类平方和
    Sum of squares of class Ⅲ
    自由度
    Degrees of freedom
    均方
    Squared value
    F显著性
    Significance
    污染程度 The degree of pollution 气孔长度 Stomatal length 365.339 2 182.669 1.417 0.268
    气孔宽度 Stomata width 342.450 2 171.225 2.192 0.141
    气孔密度 Stomatal density 20557.829 2 10278.915 0.457 0.640
    树种差异 Tree species differences 气孔长度 Stomatal length 2052.773 6 342.129 7.571 0.001**
    气孔宽度 Stomata width 1303.944 6 217.324 4141.690 0.001**
    气孔密度 Stomatal density 386552.852 6 64425.475 23.403 0.000**
    注:**表示P<0.01。
    Note: ** means P<0.01.
    下载: 导出CSV

    表  3   叶片滞尘量与生理指标之间的相关性

    Table  3   Correlation between dust retention and physiological indices of leaves

    X1X2X3X4X5X6
    X1 1 0.917** 0.886** −0.692 −0.739 0.966**
    X2 1 0.997** −0.531 −0.508 0.907**
    X3 1 −0.478 −0.443 0.878**
    X4 1 0.918** −0.709
    X5 1 −0.727
    X6 1
    注:**表示在0.01水平上极显著相关;X1:单位叶面积TSP滞留量; X2:单位叶面积PM10滞留量; X3:单位叶面积PM2.5滞留量; X4 :叶绿素a含量;X5:叶绿素b含量;X6:丙二醛含量。
    Note: **extremely significant correlation at P< 0.01; X1: TSP retention per unit leaf area; X2: PM10 retention per unit leaf area; X3: PM2.5 retention per unit leaf area; X4: chlorophyll a content; X5: chlorophyll b content; X6: malondialdehyde content.
    下载: 导出CSV

    表  4   滞尘量与生理指标的主成分贡献率和因子载荷矩阵

    Table  4   Contribution rate and factor loading matrix of principal components on dust retention and physiological indicators

    主成分
    Principal component
    成分矩阵 Component matrix特征值
    Eigen value
    贡献率
    Contribution/%
    累计贡献率
    Cumulative/%
    X1X2X3X4X5X6
    10.980.920.89−0.79−0.800.974.8079.9279.92
    20.090.380.440.560.580.081.0016.7396.65
    下载: 导出CSV

    表  5   树种在第1、2主成分的得分以及综合得分

    Table  5   Overall score and scores of first and second principal components on varied species of plants

    树种
    Tree species
    F1F2F排名
    Ranking
    雪松 Cedrus deodara 3.19 0.01 2.55 1
    圆柏 Sabina chinensis 3.08 −0.31 2.41 2
    女贞 Ligustrum lucidum −0.25 0.73 −0.08 3
    石楠 Photinia serratifolia −1.50 1.28 −0.98 4
    大叶黄杨 Buxus megistophylla −1.41 0.64 −1.02 5
    海桐 Pittosporum tobira −1.32 −0.63 −1.16 6
    南天竹 Nandina domestica −1.79 −1.72 −1.72 7
    注:F1:树种在第1主成分(滞尘能力)的得分,随数值增加树种滞尘能力得分高;F2:树种在第2主成分(生理响应)的得分,随数值增加树种生理响应得分高;F:树种的综合得分;表中的排名是按照F综合得分进行的排名。
    Note: F1: The score of tree species in the first principal component (Dust detentions) , the dust retention ability score of tree species was higher with increasing value; F2: The score of tree species in the second principal component (Physiological response) , the physiological response score of tree species was higher with increasing value; F: Composite score of tree species; The rankings in the table are based on the F composite score.
    下载: 导出CSV
  • [1] 黄丽坤, 王广智, 王琨, 等. 哈尔滨市采暖与非采暖期大气颗粒物污染特性研究 [J]. 环境工程学报, 2011, 5(1):146−150.

    HUANG L K, WANG G Z, WANG K, et al. Pollution properties of atmospheric particles in Harbin during heating and non-heating periods [J]. Chinese Journal of Environmental Engineering, 2011, 5(1): 146−150.(in Chinese)

    [2] 张超, 吴群, 彭建超, 等. 城市绿地生态系统服务价值估算及功能评价: 以南京市为例 [J]. 生态科学, 2019, 38(4):142−149.

    ZHANG C, WU Q, PENG J C, et al. Calculation of the value and evaluation of the function for ecosystem services of urban green space: A case study in Nanjing [J]. Ecological Science, 2019, 38(4): 142−149.(in Chinese)

    [3] 郭蒙蒙, 姜楠, 王申博, 等. 郑州市2014—2017年大气污染特征及气象条件影响分析 [J]. 环境科学, 2019, 40(9):3856−3867.

    GUO M M, JIANG N, WANG S B, et al. Analysis of air pollution characteristics and meteorological conditions in Zhengzhou from 2014 to 2017 [J]. Environmental Science, 2019, 40(9): 3856−3867.(in Chinese)

    [4] 王琴, 冯晶红, 黄奕, 等. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征 [J]. 生态学报, 2020, 40(1):213−222.

    WANG Q, FENG J H, HUANG Y, et al. Dust- retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan [J]. Acta Ecologica Sinica, 2020, 40(1): 213−222.(in Chinese)

    [5] 余海龙, 黄菊莹. 城市绿地滞尘机理及其效应研究进展 [J]. 西北林学院学报, 2012, 27(6):238−241,247. DOI: 10.3969/j.issn.1001-7461.2012.06.47

    YU H L, HUANG J Y. Research advances in mechanism and effect of dust retention of urban green areas [J]. Journal of Northwest Forestry University, 2012, 27(6): 238−241,247.(in Chinese) DOI: 10.3969/j.issn.1001-7461.2012.06.47

    [6] 陈小平, 焦奕雯, 裴婷婷, 等. 园林植物吸附细颗粒物(PM2.5)效应研究进展 [J]. 生态学杂志, 2014, 33(9):2558−2566.

    CHEN X P, JIAO Y W, PEI T T, et al. The effect of adsorbing fine particulate matter(PM2.5) by garden plants: A review [J]. Chinese Journal of Ecology, 2014, 33(9): 2558−2566.(in Chinese)

    [7] 吕铃钥, 李洪远, 杨佳楠. 植物吸附大气颗粒物的时空变化规律及其影响因素的研究进展 [J]. 生态学杂志, 2016, 35(2):524−533.

    LYU L Y, LI H Y, YANG J N. The temporal-spatial variation characteristics and influencing factors of absorbing air particulate matters by plants: A review [J]. Chinese Journal of Ecology, 2016, 35(2): 524−533.(in Chinese)

    [8] 张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系 [J]. 北京林业大学学报, 2017, 39(6):70−77.

    ZHANG T, HONG X L, SUN L W, et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis [J]. Journal of Beijing Forestry University, 2017, 39(6): 70−77.(in Chinese)

    [9] 张家洋, 刘兴洋, 邹曼, 等. 37种道路绿化树木滞尘能力的比较 [J]. 云南农业大学学报(自然科学), 2013, 28(6):905−912.

    ZHANG J Y, LIU X Y, ZOU M, et al. Comparison of dust retention capacities among thirty-seven species of road landscape trees [J]. Journal of Yunnan Agricultural University (Natural Science), 2013, 28(6): 905−912.(in Chinese)

    [10] 张维康, 王兵, 牛香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力 [J]. 环境科学, 2015, 36(7):2381−2388.

    ZHANG W K, WANG B, NIU X. Adsorption capacity of the air particulate matter in urban landscape plants in different polluted regions of Beijing [J]. Environmental Science, 2015, 36(7): 2381−2388.(in Chinese)

    [11] 李艳梅, 陈奇伯, 李艳芹, 等. 昆明10个绿化树种对不同污染区的滞尘及吸净效应 [J]. 西南林业大学学报, 2016, 36(3):105−110.

    LI Y M, CHEN Q B, LI Y Q, et al. Study on the effect of absorption and purification air pollution of 10 common greening species at different polluted area in Kunming [J]. Journal of Southwest Forestry University, 2016, 36(3): 105−110.(in Chinese)

    [12] 吕晓倩, 张银龙. 城市攀缘植物对大气颗粒物的吸附效果及重金属累积研究 [J]. 中国园林, 2020, 36(12):101−105.

    LYU X Q, ZHANG Y L. Deposition of particular matter and accumulation of heavy metal on six climbing plants [J]. Chinese Landscape Architecture, 2020, 36(12): 101−105.(in Chinese)

    [13] 王会霞, 石辉, 刘剑华, 等. 西安城区2种女贞叶面滞尘和叶片形态结构 [J]. 安全与环境学报, 2018, 18(6):2344−2351.

    WANG H X, SHI H, LIU J H, et al. Analysis of leaf dust accumulation and leaf morphological structure of 2 plant species under different urban environments in Xi'an [J]. Journal of Safety and Environment, 2018, 18(6): 2344−2351.(in Chinese)

    [14] 高传友. 南宁市典型园林植物滞尘效应及生理特性研究 [J]. 水土保持研究, 2016, 23(1):187−192.

    GAO C Y. Research on dust retention capacities and physiological properties of different typical green plants in Nanning City [J]. Research of Soil and Water Conservation, 2016, 23(1): 187−192.(in Chinese)

    [15] 杨佳, 王会霞, 谢滨泽, 等. 北京9个树种叶片滞尘量及叶面微形态解释 [J]. 环境科学研究, 2015, 28(3):384−392.

    YANG J, WANG H X, XIE B Z, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing [J]. Research of Environmental Sciences, 2015, 28(3): 384−392.(in Chinese)

    [16] 林星宇, 李海梅, 李彦华, 等. 八种乔木滞尘效益及其与叶表面特征关系 [J]. 北方园艺, 2019(17):94−101.

    LIN X Y, LI H M, LI Y H, et al. Relationship between the surface characteristics of eight tree leaves and dust retention [J]. Northern Horticulture, 2019(17): 94−101.(in Chinese)

    [17]

    CHEN L, LIU C, ZHANG L, et al. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5) [J]. Scientific Reports, 2017, 7: 3206. DOI: 10.1038/s41598-017-03360-1

    [18]

    MO L, MA Z Y, XU Y S, et al. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China [J]. PLoS One, 2015, 10(10): e0140664. DOI: 10.1371/journal.pone.0140664

    [19] 晏增, 赵蓬晖, 杨淑红, 等. 冬季郑州市12个常绿树种的光合特性及滞尘能力 [J]. 广西植物, 2021, 41(9):1433−1442. DOI: 10.11931/guihaia.gxzw201911004

    YAN Z, ZHAO P H, YANG S H, et al. Photosynthetic characteristics and dust retention capacities of 12 evergreen tree species in Zhengzhou City during winter [J]. Guihaia, 2021, 41(9): 1433−1442.(in Chinese) DOI: 10.11931/guihaia.gxzw201911004

    [20]

    HE C, QIU K Y, ALAHMAD A, et al. Particulate matter capturing capacity of roadside evergreen vegetation during the winter season [J]. Urban Forestry & Urban Greening, 2020, 48: 126510.

    [21]

    SU K, YU Q, HU Y H, et al. Inversion and effect research on dust distribution of urban forests in Beijing [J]. Forests, 2019, 10(5): 418. DOI: 10.3390/f10050418

    [22] 陈强, 梅琨, 朱慧敏, 等. 郑州市PM2.5浓度时空分布特征及预测模型研究 [J]. 中国环境监测, 2015, 31(3):105−112. DOI: 10.3969/j.issn.1002-6002.2015.03.018

    CHEN Q, MEI K, ZHU H M, et al. Study on spatiotemporal variability of PM2.5 concentrations and prediction model over Zhengzhou City [J]. Environmental Monitoring in China, 2015, 31(3): 105−112.(in Chinese) DOI: 10.3969/j.issn.1002-6002.2015.03.018

    [23] 王会霞, 石辉, 王彦辉. 典型天气下植物叶面滞尘动态变化 [J]. 生态学报, 2015, 35(6):1696−1705.

    WANG H X, SHI H, WANG Y H. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions [J]. Acta Ecologica Sinica, 2015, 35(6): 1696−1705.(in Chinese)

    [24] 杨山. 长三角地区三种常绿阔叶绿化树种对颗粒物的滞留及其生理响应[D]. 杭州: 浙江农林大学, 2018

    YANG S. Particulate retention and physiological response of three evergreen broad-leaved afforestation tree species in Yangtze River Delta[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese)

    [25] 史军娜, 张罡, 安海龙, 等. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究 [J]. 北京林业大学学报, 2016, 38(12):84−91.

    SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles [J]. Journal of Beijing Forestry University, 2016, 38(12): 84−91.(in Chinese)

    [26] 赵松婷, 李新宇, 李延明. 北京市29种园林植物滞留大气细颗粒物能力研究 [J]. 生态环境学报, 2015, 24(6):1004−1012.

    ZHAO S T, LI X Y, LI Y M. Fine particle-retaining capability of twenty-nine landscape plant species in Beijing [J]. Ecology and Environmental Sciences, 2015, 24(6): 1004−1012.(in Chinese)

    [27] 李朝梅, 王军梦, 王腾飞, 等. 郑州市常见公园绿化植物的滞尘能力及叶片性状分析 [J]. 西北林学院学报, 2021, 36(2):123−129. DOI: 10.3969/j.issn.1001-7461.2021.02.18

    LI C M, WANG J M, WANG T F, et al. Dust-retention capability and leaf traits of common park greening plant species in Zhengzhou City [J]. Journal of Northwest Forestry University, 2021, 36(2): 123−129.(in Chinese) DOI: 10.3969/j.issn.1001-7461.2021.02.18

    [28] 淑敏, 斯日木极, 姜涛, 等. 辽宁西北部主要绿化树种对空气颗粒物滞留能力研究 [J]. 水土保持学报, 2018, 32(4):297−303,309.

    SHU M, SI R M J, JIANG T, et al. Retention capacity of the main urban afforest plant species for atmospheric particles in northwest of Liaoning Province [J]. Journal of Soil and Water Conservation, 2018, 32(4): 297−303,309.(in Chinese)

    [29] 任媛媛, 刘艳萍, 王念, 等. 9种屋顶绿化阔叶植物叶片解剖结构与抗旱性的关系 [J]. 南京林业大学学报(自然科学版), 2014, 38(4):64−68.

    REN Y Y, LIU Y P, WANG N, et al. The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4): 64−68.(in Chinese)

    [30] 裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性 [J]. 浙江农林大学学报, 2018, 35(1):81−87. DOI: 10.11833/j.issn.2095-0756.2018.01.011

    QIU L H, HE W Y, LIU M H, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City [J]. Journal of Zhejiang A & F University, 2018, 35(1): 81−87.(in Chinese) DOI: 10.11833/j.issn.2095-0756.2018.01.011

    [31] 李果. 浙江农林大学衣锦校区绿化植物滞尘效应分析[D]. 杭州: 浙江农林大学, 2019

    LI G. Analysis on dust retention effect of green plants in yijin campus of Zhejiang agriculture and forestry university[D]. Hangzhou: Zhejiang A & F University, 2019. (in Chinese)

    [32] 俎丽红, 王鑫, 王润玺, 等. 不同大气环境中白皮松针叶重金属积累及抗性特征研究 [J]. 农业环境科学学报, 2017, 36(11):2207−2215. DOI: 10.11654/jaes.2017-0332

    ZU L H, WANG X, WANG R X, et al. Study on resistance characteristics to heavy metal accumulation of Pinus bungeana Zucc. needles from different atmospheric environments [J]. Journal of Agro-Environment Science, 2017, 36(11): 2207−2215.(in Chinese) DOI: 10.11654/jaes.2017-0332

    [33] 李艳梅, 陈奇伯, 王邵军, 等. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释 [J]. 林业科学, 2018, 54(5):18−29. DOI: 10.11707/j.1001-7488.20180503

    LI Y M, CHEN Q B, WANG S J, et al. Effects of leaf surface micro-morphology structure on leaf dust-retaining ability of main greening tree species in Kunming City [J]. Scientia Silvae Sinicae, 2018, 54(5): 18−29.(in Chinese) DOI: 10.11707/j.1001-7488.20180503

    [34] 段嵩岚, 闫淑君, 田高飞, 等. 福州市19种灌木滞留颗粒物效应与叶片性状研究 [J]. 西北林学院学报, 2018, 33(4):230−238. DOI: 10.3969/j.issn.1001-7461.2018.04.38

    DUAN S L, YAN S J, TIAN G F, et al. Effects of the particles retained by 19 widely used shrubs on road sides and their relationships with leaf trait in Fuzhou [J]. Journal of Northwest Forestry University, 2018, 33(4): 230−238.(in Chinese) DOI: 10.3969/j.issn.1001-7461.2018.04.38

图(5)  /  表(5)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  196
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2022-01-31
  • 刊出日期:  2022-02-24

目录

    /

    返回文章
    返回