• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南安石亭群体种茶树种质资源遗传多样性及主要成分分析

欧晓西 林宏政 何吉杭 李秋明 傅瑞典 陈育财 郑玉成 孙云

欧晓西,林宏政,何吉杭,等. 南安石亭群体种茶树种质资源遗传多样性及主要成分分析 [J]. 福建农业学报,2024,39(9):1−10
引用本文: 欧晓西,林宏政,何吉杭,等. 南安石亭群体种茶树种质资源遗传多样性及主要成分分析 [J]. 福建农业学报,2024,39(9):1−10
OU X X, LIN H Z, HE J H, et al. Genetic Diversity and Principal Components of Tea Germplasms from Shiting Plantations in Nan'an [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−10
Citation: OU X X, LIN H Z, HE J H, et al. Genetic Diversity and Principal Components of Tea Germplasms from Shiting Plantations in Nan'an [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−10

南安石亭群体种茶树种质资源遗传多样性及主要成分分析

基金项目: 国家现代农业产业技术体系(CARS-19);福建张天福茶叶发展基金会科技创新基金(FJZTF01)
详细信息
    作者简介:

    欧晓西(1999 —),女,硕士研究生,主要从事茶叶加工与品质研究,E-mail:ouxiaoxi_66@163.com

    通讯作者:

    郑玉成(1994 —),男,博士,讲师,主要从事茶叶资源利用与加工工程研究,E-mail:18094159524@163.com

    孙云(1964—),女,博士,教授,主要从事茶叶加工与品质研究,E-mail:sunyun1125@126.com

  • 中图分类号: TS272

Genetic Diversity and Principal Components of Tea Germplasms from Shiting Plantations in Nan'an

  • 摘要:   目的  深入了解南安石亭群体种茶树种质资源(Camellia sinensis)的遗传多样性及其直接利用价值,为南安石亭群体种茶树种质资源的创新利用提供科学依据。  方法  利用SNP分子标记技术对17份南安石亭群体种茶树种质资源及福建6个代表性品种进行亲缘关系及遗传多样性分析。进一步采用高效液相色谱法(HPLC)和超高效液相色谱-串联质谱法(UPLC-MS/MS)测定代表性的10份南安石亭群体种茶树种质资源儿茶素及游离氨基酸等组分含量。  结果  筛选出44个适用于鉴定南安石亭群体种茶树种质资源的SNP位点,构建南安石亭群体种茶树种质资源SNP指纹图谱。通过UPGMA进化树构建,发现23个样品可分为4个亚群,南安石亭群体种茶树种质资源与闽北地区的肉桂、奇丹亲缘关系较近。此外,进行了氨基酸,儿茶素含量分析,发现南安石亭群体种茶树种质资源的主要品质成分含量差异显著(P<0.05)。儿茶素总量为107.56~177.60 mg·g−1,游离氨基酸总量为8.46~32.66 mg·g−1。其中ST2、ST3、ST6、ST17具有较高的EGCG或EGCG3"Me含量,ST3氨基酸含量最高及儿茶素苦涩味指数最低。  结论  南安石亭群体种茶树种质资源丰富,与闽北地区茶树资源亲缘关系较为亲密。ST2、ST3、ST6和ST17具有较高的EGCG或EGCG3"Me含量,ST3适制绿茶,可进一步开展选育工作。
  • 图  1  南安石亭群体种茶树种质资源成熟叶片形态

    Figure  1.  Morphology of mature tea leaves of Shiting plantation germplasms

    图  2  南安石亭群体种茶树种质资源指纹图谱

    Figure  2.  Fingerprint map of polymorphic sites of Shiting plantation tea germplasms

    图  3  17份南安石亭群体种茶树种质资源及6个福建代表性栽培品种聚类图

    Figure  3.  Cluster analysis on 17 Shiting plantation tea germplasms and 6 representative cultivated varieties from Fujian

    图  4  南安石亭群体种茶树种质资源主要成分主成分分析

    Figure  4.  Principal component analysis on Shiting plantation tea germplasms

    表  1  17份南安石亭群体种茶树种质资源

    Table  1.   Germplasm resources of 17 C.sinensis plants planted in Shiting population, Nan'an

    编号
    Code
    茶树种质
    Germplasm resours
    长宽比
    Aspect ratio
    叶面积
    Leaf area/cm2
    叶形
    Blade shape
    叶色
    Leaf color
    1 ST1 2.87 10.63 长椭圆形 黄绿色
    2 ST2 2.83 10.47 长椭圆形 黄绿色
    3 ST3 2.54 10.25 长椭圆形 黄绿色
    4 ST4 2.32 10.15 椭圆形 黄绿色
    5 ST5 2.61 14.31 长椭圆形 黄绿色
    6 ST6 3.10 9.56 披针形 黄绿色
    7 ST7 2.82 9.55 长椭圆形 深绿色
    8 ST8 2.20 6.16 椭圆形 黄绿色
    9 ST9 2.25 16.13 椭圆形 深绿色
    10 ST10 2.37 5.99 椭圆形 深绿色
    11 ST11 2.35 6.58 椭圆形 黄绿色
    12 ST12 2.18 17.61 椭圆形 黄绿色
    13 ST13 2.44 10.68 椭圆形 深绿色
    14 ST14 2.52 9.34 长椭圆形 黄绿色
    15 ST15 2.26 8.37 椭圆形 深绿色
    16 ST16 2.17 13.65 椭圆形 黄绿色
    17 ST17 2.50 11.83 椭圆形 黄绿色
    下载: 导出CSV

    表  2  南安石亭群体种茶树种质资源儿茶素组分含量

    Table  2.   Catechins of Shiting plantation tea germplasms

    (单位:mg·g−1
    儿茶素类
    Catechins
    ST2 ST3 ST5 ST6 ST8 ST10 ST11 ST12 ST14 ST17
    非酯
    型儿
    茶素
    Non-ester
    catechins
    GC 0.35±0.02f 0.96±0.05a 0.42±0.01ef 0.48±0.02def 0.85±0.02ab 0.49±0.06def 0.76±0.03bc 0.61±0.12cde 0.88±0.02ab 0.65±0.30cd
    EGC 23.68±1.41f 28.91±2.25e 38.57±2.38c 24.79±2.07ef 56.41±3.73a 29.40±3.30d 38.44±3.66c 45.12±3.11b 44.39±1.16b 31.80±0.40d
    C 1.72±0.06 2.15±0.18a 1.93±0.09ab 1.98±0.25ab 1.95±0.30ab 1.36±0.31 c 1.78±0.27ab 0.83±0.09de 0.91±0.08d 0.51±0.01e
    EC 13.83±1.40cd 11.89±0.79e 15.06±0.36c 7.06±0.49f 18.72±0.55a 8.13±0.34f 13.29±0.88d 17.44±1.07b 10.96±0.47e 7.82±0.13f
    总量 39.58±2.06de 43.91±3.34d 55.98±2.77c 34.31±2.88e 77.93±4.35a 39.38±3.83de 54.27±4.77c 64.00±4.44b 57.14±1.74c 40.78±0.38d
    酯型儿
    茶素
    Ester
    catechins
    EGCG 92.51±6.53a 52.21±3.22d 57.99±1.27cd 98.30±6.29a 61.37±2.20c 76.02±4.76b 40.30±3.97e 57.12±5.35cd 63.94±2.28c 39.60±0.91e
    EGCG3" Me 12.97±0.88b 13.27±0.66b 1.66±0.11e 7.11±0.18c 6.02±0.52d 6.55±0.48cd 6.36±0.25cd 18.18±0.14a
    ECG 31.75±2.02a 14.82±0.58e 17.63±0.43c 19.92±0.96b 17.16±0.47cd 14.93±0.70e 11.18±0.85f 15.77±1.11de 11.64±0.38f 7.58±0.12g
    CG 0.66±0.03c 0.94±0.05b 0.65±0.03c 0.62±0.02c 0.65±0.02c 1.41±0.08a
    总量 137.89±9.45a 81.24±4.49d 77.93±1.79d 118.84±7.25b 85.64±2.86cd 91.6±5.44c 57.50±5.35f 79.44±6.88d 81.94±2.89d 66.77±0.88e
    总儿茶素
    Total
    catechins
    177.47±11.15a 125.15±7.81ef 133.91±4.28de 153.15±9.93bc 163.57±6.84ab 130.98±7.64de 111.77±10.00fg 143.44±11.29cd 139.08±4.56cde 107.55±1.02g
    儿茶素
    苦涩味指数
    Catechins
    bitterness and
    astringency index
    9.54±1.07c 6.90±0.13d 6.74±0.07de 15.87±0.07a 6.57±0.16de 12.73±0.30b 6.02±0.16e 6.49±0.15de 10.18±0.15c 9.56±0.18c
    儿茶素
    品质指数
    Catechin
    quality index
    524.60±7.00a 232.12±5.47d 196.46±10.04e 477.71±17.2b 139.46±6.84gh 311.54±33.00c 133.99±3.89h 161.41±3.74fg 170.25±2.58f 148.39±4.63fgh
    数值表示3个样品均值±标准差;同行不同小写字母表示差异显著(P < 0.05);“-”表示未检测出。表3 同。
    Data are standard deviation ± mean of triplicated samples; those with different lowercase letters on same row indicate significant differences at P<0.05; "-" indicates not detected. Same for Table 3.
    下载: 导出CSV

    表  3  南安石亭群体种茶树种质资源氨基酸的组分含量

    Table  3.   Amino acids of Shiting plantation tea germplasms

    (单位:mg·g−1
    氨基酸组分
    Amino acid
    components
    ST2 ST3 ST5 ST6 ST8 ST10 ST11 ST12 ST14 ST17
    鲜味类
    Flavor
    Thea3.27±0.14e9.98±0.13a5.54±0.17d2.07±0.12g1.61±0.28h7.17±0.38b6.50±0.36c2.62±0.19f2.37±0.06fg2.10±0.00g
    Pro0.29±0.01e0.69±0.02a0.31±0.01e0.52±0.04bc0.37±0.18de0.36±0.02de0.47±0.04cd0.60±0.02ab0.40±0.04de0.38±0.03de
    Glu2.27±0.15bc2.53±0.29b0.61±0.05f1.13±0.04e0.97±0.14ef1.93±0.00cd1.76±0.23d3.90±0.65a4.09±0.13a0.14±0.02g
    GABA0.06±0.00a0.06±0.00a0.06±0.00a0.06±0.00a0.06±0.00a0.06±0.00a0.07±0.00a0.07±0.00a0.07±0.00a0.07±0.00a
    Asp0.30±0.14cd0.59±0.01b0.24±0.03de0.88±0.04a0.15±0.02ef0.31±0.08cd0.17±0.04ef0.34±0.05cd0.39±0.07c0.12±0.01f
    总量6.20±0.26f13.85±0.24a6.76±0.19e4.66±0.13g3.16±0.35g9.83±0.29b8.96±0.2c7.54±0.49d7.31±0.09d0.81±0.01h
    甜味类
    Sweetness
    Ala0.13±0.04f0.28±0.01de0.14±0.03f0.18±0.04ef0.46±0.1c0.47±0.06c0.93±0.09b0.39±0.02cd0.16±0.04ef2.00±0.17a
    Thr0.22±0.03e0.53±0.03a0.27±0.02d0.41±0.03b0.17±0.04e0.35±0.02c0.36±0.03c0.36±0.02c0.35±0.04c0.21±0.02e
    Asn0.28±0.03cd0.57±0.2a0.24±0.07cd0.6±0.01a0.19±0.04d0.37±0.12bc0.29±0.04cd0.35±0.02bcd0.48±0.06ab0.24±0.02cd
    Ser0.37±0.01f1.24±0.06a0.47±0.05ef0.8±0.08c0.55±0.03def1.00±0.08b0.66±0.31cde0.8±0.02c0.75±0.05cd0.43±0.07f
    Gly0.04±0.01d0.06±0.02cd0.25±0.03a0.09±0.02cd0.12±0.07c0.06±0.04cd0.19±0.01b0.05±0.03d0.06±0.05cd0.1±0.04cd
    Gln3.15±0.27b3.10±0.02b0.47±0.10f1.59±0.08e1.00±0.17e3.76±0.18a2.58±0.34c2.99±0.27b3.69±0.13a0.18±0.03f
    总量4.22±0.13d5.80±0.05ab1.85±0.03g3.96±0.22d2.45±0.28f5.94±0.37a4.88±0.17c4.93±0.3c5.40±0.35b3.03±0.19e
    芳香类
    Aromatic
    Lys0.21±0.04cd0.62±0.03a0.15±0.02de0.42±0.03b0.19±0.08cd0.24±0.02c0.25±0.01c0.38±0.02b0.23±0.03c0.11±0.04e
    Tyr0.53±0.05cd0.61±0.03c0.49±0.04de0.81±0.07b0.54±0.1cd0.41±0.04ef0.85±0.07b2.24±0.03a0.55±0.01cd0.36±0.08g
    Trp0.47±0.04a0.27±0.02c0.16±0.04e0.33±0.03b0.17±0.04e0.16±0.00e0.17±0.01e0.28±0.02c0.22±0.01d0.08±0.02f
    总量1.21±0.13c1.5±0.02b0.79±0.03e1.56±0.04b0.90±0.16de0.81±0.06e1.27±0.08c2.9±0.05a1.00±0.02d0.55±0.11f
    苦味类
    Bitters
    Arg2.81±0.15d8.25±0.46a4.93±0.13c1.86±0.12e0.98±0.36f5.91±0.27b6.30±0.31b2.18±0.3e2.11±0.25e0.14±0.01g
    Leu0.28±0.01ef1.07±0.02a0.45±0.06bc0.5±0.04b0.33±0.04de0.27±0.02ef0.24±0.03fg0.39±0.06cd0.34±0.02de0.2±0.04g
    Ile0.31±0.02cd0.91±0.21a0.45±0.09bc0.48±0.03b0.06±0.03f0.22±0.00def0.22±0.05def0.29±0.11cde0.38±0.09bcd0.14±0.03ef
    His0.11±0.02cd0.15±0.02b0.09±0.01d0.19±0.00a0.11±0.04cd0.11±0.02cd0.12±0.02bcd0.14±0.01bc0.11±0.02bcd0.09±0.02d
    Val0.18±0.03e0.49±0.02a0.12±0.01f0.40±0.01b0.06±0.03g0.22±0.03d0.21±0.02de0.33±0.02c0.23±0.01d0.06±0.02g
    总量3.68±0.18d10.86±0.36a6.04±0.29c3.43±0.15de1.54±0.38f6.73±0.22b7.09±0.29b3.33±0.27de3.17±0.31e0.62±0.08g
    其他
    Other
    β-ABA0.09±0.01e0.11±0.01e2.42±0.27b0.08±0.01e0.85±0.26d0.16±0.04e2.67±0.22a1.24±0.13c0.07±0.01e0.90±0.04d
    sar0.17±0.01c0.22±0.04bc0.23±0.00bc0.31±0.13abc0.19±0.03bc0.34±0.14ab0.33±0.09abc0.28±0.06abc0.41±0.06a0.32±0.10abc
    总氨基酸15.55±0.39f32.32±0.44a18.09±0.7e13.70±0.08g9.15±0.68h24.87±0.57c25.32±0.19b20.21±0.52d17.47±0.8e8.35±0.27i
    下载: 导出CSV
  • [1] 阚能才. 茶树起源与川渝野生茶树分布研究 [J]. 西南农业学报, 2013, 26(1):382−385. doi: 10.3969/j.issn.1001-4829.2013.01.080

    KAN N C. Study on geographical distribution of wild tea trees in Sichuan and Chongqing, and origin of tea tree [J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 382−385. (in Chinese) doi: 10.3969/j.issn.1001-4829.2013.01.080
    [2] 黄天柱, 廖渊泉. 石亭茶香飘海宇 [J]. 农业考古, 1991(4):227.

    HUANG T Z, LIAO Y Q. Shi Ting Cha Xiang Piao Hai Yu [J]. Agricultural Archaeology, 1991(4): 227. (in Chinese)
    [3] 林金良, 陈育才. 九日山和石亭绿茶文化资源探讨[J]. 福建茶叶, 2020, 42(11): 307-309.

    LIN J L, CHEN Y C. Discussion on jiuri mountain heshiting green tea cultural resources[J]. Tea in Fujian, 2020, 42(11): 307-309. (in Chinese)
    [4] WANG B Y, TAN H W, FANG W P, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of Longan (Dimocarpus longan) germplasm [J]. Horticulture Research, 2015, 2: 14065. doi: 10.1038/hortres.2014.65
    [5] XU C, REN Y H, JIAN Y Q, et al. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding [J]. Molecular Breeding, 2017, 37(3): 20. doi: 10.1007/s11032-017-0622-z
    [6] 郭灿, 皮发娟, 吴昌敏, 等. 基于GBS测序的全基因组SNP揭示贵州地方茶组植物资源的亲缘关系 [J]. 南方农业学报, 2021, 52(3):660−670. doi: 10.3969/j.issn.2095-1191.2021.03.014

    GUO C, PI F J, WU C M, et al. Genome-wide SNP developed by genotyping-by-sequencing revealed the phylogenetic relationship of Sect. Thea(L. ) Dyer resources in Guizhou [J]. Journal of Southern Agriculture, 2021, 52(3): 660−670. (in Chinese) doi: 10.3969/j.issn.2095-1191.2021.03.014
    [7] LIN Y, YU W T, CAI C P, et al. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping [J]. Food Research International, 2022, 162: 111970. doi: 10.1016/j.foodres.2022.111970
    [8] LIU C G, YU W T, CAI C P, et al. Genetic diversity of tea plant (Camellia sinensis (L. ) kuntze) germplasm resources in Wuyi mountain of China based on single nucleotide polymorphism (SNP) markers [J]. Horticulturae, 2022, 8(10): 932. doi: 10.3390/horticulturae8100932
    [9] CHEN Y J, NIU S Z, DENG X Y, et al. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing [J]. BMC Plant Biology, 2023, 23(1): 196. doi: 10.1186/s12870-023-04192-0
    [10] LIAO Y Y, ZHOU X C, ZENG L T. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review [J]. Critical Reviews in Food Science and Nutrition, 2022, 62(14): 3751−3767. doi: 10.1080/10408398.2020.1868970
    [11] WILLIAMS J L, EVERETT J M, D’CUNHA N M, et al. The effects of green tea amino acid L-theanine consumption on the ability to manage stress and anxiety levels: A systematic review [J]. Plant Foods for Human Nutrition, 2020, 75(1): 12−23. doi: 10.1007/s11130-019-00771-5
    [12] 江新凤, 李琛, 石旭平, 等. 高效液相色谱法对“黄金菊” 茶中儿茶素和氨基酸组分含量的测定 [J]. 食品研究与开发, 2021, 42(5):172−176. doi: 10.12161/j.issn.1005-6521.2021.05.029

    JIANG X F, LI C, SHI X P, et al. HPLC determination of catechin and amino acid components in Camellia sinensis ‘huangjinju’ [J]. Food Research and Development, 2021, 42(5): 172−176. (in Chinese) doi: 10.12161/j.issn.1005-6521.2021.05.029
    [13] UNNO K, NAKAMURA Y. Green tea suppresses brain aging [J]. Molecules, 2021, 26(16): 4897. doi: 10.3390/molecules26164897
    [14] JIN J Q, JIANG C K, YAO M Z, et al. Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China [J]. Scientific Reports, 2020, 10(1): 9715. doi: 10.1038/s41598-020-66808-x
    [15] 金基强, 张晨禹, 马建强, 等. 茶树种质资源研究“十三五” 进展及“十四五” 发展方向 [J]. 中国茶叶, 2021, 43(9):42−49,76. doi: 10.3969/j.issn.1000-3150.2021.09.006

    JIN J Q, ZHANG C Y, MA J Q, et al. Research progress on tea germplasms during the 13th Five-Year Plan period and development direction in the 14th Five-Year Plan period [J]. China Tea, 2021, 43(9): 42−49,76. (in Chinese) doi: 10.3969/j.issn.1000-3150.2021.09.006
    [16] WANG P J, GU M Y, SHAO S X, et al. Changes in non-volatile and volatile metabolites associated with heterosis in tea plants (Camellia sinensis) [J]. Journal of Agricultural and Food Chemistry, 2022, 70(9): 3067−3078. doi: 10.1021/acs.jafc.1c08248
    [17] 江昌俊. 茶树育种学[M]. 北京: 中国农业出版社: 2005.
    [18] FANG W P, MEINHARDT L W, TAN H W, et al. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers [J]. Horticulture Research, 2014, 1: 14035. doi: 10.1038/hortres.2014.35
    [19] 樊晓静, 于文涛, 蔡春平, 等. 利用SNP标记构建茶树品种资源分子身份证 [J]. 中国农业科学, 2021, 54(8):1751−1772. doi: 10.3864/j.issn.0578-1752.2021.08.014

    FAN X J, YU W T, CAI C P, et al. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism(SNP) markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751−1772. (in Chinese) doi: 10.3864/j.issn.0578-1752.2021.08.014
    [20] 徐梦婷, 魏明秀, 陈潇敏, 等. 寿宁长叶1号等茶树新品系儿茶素和氨基酸组分分析 [J]. 茶叶学报, 2022, 63(1):20−26. doi: 10.3969/j.issn.1007-4872.2022.01.004

    XU M T, WEI M X, CHEN X M, et al. Catechins and amino acids in shouningchangye No. 1 and other new tea varieties [J]. Acta Tea Sinica, 2022, 63(1): 20−26. (in Chinese) doi: 10.3969/j.issn.1007-4872.2022.01.004
    [21] ZHANG Y N, YIN J F, CHEN J X, et al. Improving the sweet aftertaste of green tea infusion with tannase [J]. Food Chemistry, 2016, 192: 470−476. doi: 10.1016/j.foodchem.2015.07.046
    [22] 李芬, 陈春林, 田玉萍, 等. 云南不同品种大叶种茶树生化成分季节变化特征分析 [J]. 食品与生物技术学报, 2022, 41(3):88−95. doi: 10.3969/j.issn.1673-1689.2022.03.012

    LI F, CHEN C L, TIAN Y P, et al. Seasonal Variation of Biochemical Components of Different Cultivars of Camellia sinensis var. assamica in Yunnan [J]. Journal of Food Science and Biotechnology, 2022, 41(3): 88−95. (in Chinese) doi: 10.3969/j.issn.1673-1689.2022.03.012
    [23] YU P H, HUANG H, ZHAO X, et al. Dynamic variation of amino acid content during black tea processing: A review [J]. Food Reviews International, 2023, 39(7): 3970−3983. doi: 10.1080/87559129.2021.2015374
    [24] HUANG X J, CAO H L, GUO Y L, et al. The dynamic change of oolong tea constitutes during enzymatic-catalysed process of manufacturing [J]. International Journal of Food Science & Technology, 2020, 55(12): 3604−3612.
    [25] LIU Z Y, RAN Q S, LI Q, et al. Interaction between major catechins and umami amino acids in green tea based on electronic tongue technology [J]. Journal of Food Science, 2023, 88(6): 2339−2352. doi: 10.1111/1750-3841.16543
    [26] JIN J Q, MA J Q, MA C L, et al. Determination of catechin content in representative Chinese tea germplasms [J]. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9436−9441. doi: 10.1021/jf5024559
    [27] 杨春, 吴昌敏, 石伟昌, 等. 黎平地方茶树资源生化成分多样性分析及优异单株鉴选 [J]. 种子, 2020, 39(10):63−66,72.

    YANG C, WU C M, SHI W C, et al. Diversity analysis of biochemical components of local tea tree resources in Liping Region and excellent individual plant selection [J]. Seed, 2020, 39(10): 63−66,72. (in Chinese)
    [28] ZHANG M, ZHANG X, HO C T, et al. Chemistry and health effect of tea polyphenol (–)-epigallocatechin 3-O-(3-O-methyl)gallate [J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5374−5378. doi: 10.1021/acs.jafc.8b04837
    [29] LI J H, CHEN S X, ZHU M Z, et al. Cluster analysis of the biochemical composition in 53 Sichuan EGCG3"Me tea resources [J]. IOP Conference Series: Materials Science and Engineering, 2017, 231: 012125. doi: 10.1088/1757-899X/231/1/012125
    [30] XU C H, LIANG L, LI Y H, et al. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity [J]. LWT, 2021, 142: 111055. doi: 10.1016/j.lwt.2021.111055
    [31] JIANG H, YU F, QIN L, et al. Dynamic change in amino acids, catechins, alkaloids, and Gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L. ) leaves [J]. Journal of Food Composition and Analysis, 2019, 77: 28−38. doi: 10.1016/j.jfca.2019.01.005
    [32] ZHANG L, CAO Q Q, GRANATO D, et al. Association between chemistry and taste of tea: A review [J]. Trends in Food Science & Technology, 2020, 101: 139−149.
    [33] LI Y C, RAN W, HE C, et al. Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea [J]. Food Chemistry: X, 2022, 14: 100289. doi: 10.1016/j.fochx.2022.100289
    [34] HU S, HE C, LI Y C, et al. Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea [J]. Food Research International, 2021, 147: 110472. doi: 10.1016/j.foodres.2021.110472
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 录用日期:  2024-09-02
  • 修回日期:  2024-09-01
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回