• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

人参属植物叶绿体基因组特征及其进化的研究

刘潮, 李敏, 任怡园, 钱柏霖, 韩利红

刘潮,李敏,任怡园,等. 人参属植物叶绿体基因组特征及其进化的研究 [J]. 福建农业学报,2022,37(7):886−896. DOI: 10.19303/j.issn.1008-0384.2022.007.009
引用本文: 刘潮,李敏,任怡园,等. 人参属植物叶绿体基因组特征及其进化的研究 [J]. 福建农业学报,2022,37(7):886−896. DOI: 10.19303/j.issn.1008-0384.2022.007.009
LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896. DOI: 10.19303/j.issn.1008-0384.2022.007.009
Citation: LIU C, LI M, REN Y Y, et al. Characteristics and Evolution of Panax Chloroplast Genomes [J]. Fujian Journal of Agricultural Sciences,2022,37(7):886−896. DOI: 10.19303/j.issn.1008-0384.2022.007.009

人参属植物叶绿体基因组特征及其进化的研究

基金项目: 国家自然科学基金项目(32060710、32100010)
详细信息
    作者简介:

    刘 潮(1980-),男,博士,副教授,研究方向:植物系统发育与进化(E-mail:liuchao_80@163.com

    通讯作者:

    韩利红(1981-),女,博士,副教授,研究方向:真菌系统发育与进化(E-mail:hanlihong9527@126.com

  • 中图分类号: R 282

Characteristics and Evolution of Panax Chloroplast Genomes

  • 摘要:
      目的  对人参属(Panax L.)物种叶绿体基因组特征及其系统发育进行研究,为我国人参属资源的遗传学研究和开发利用提供理论依据。
      方法  基于14种人参属植物叶绿体基因组序列,利用生物信息学软件,对叶绿体基因组特征、序列重复、结构变异、基因进化和系统发育进行分析。
      结果  人参属物种叶绿体基因组均为典型的四分体结构,包含114个unique基因。长重复序列主要为回文重复和正向重复,30~39 bp的重复序列最多,SSR大多为A/T重复,单核苷酸重复是最丰富的类型。人参属叶绿体基因组未发生基因重排,反向重复区(IR)与单拷贝区边界高度保守,鉴定的12个核苷酸高度可变热点中7个位于大单拷贝(LSC)区,5个位于小单拷贝(SSC)区。根据dN/dS比率,发现功能未知基因clpPycf1ycf2受正选择作用。系统发育分析显示,屏边三七和三叶参位于基部支系,四倍体人参和西洋参与其他二倍体物种聚在不同支系,三七、竹节参和越南参则亲缘关系较近。
      结论  人参属叶绿体基因组基因数目和顺序一致,基因组结构保守,重复序列数目和类型存在差异,单拷贝区核苷酸多态性高于IR区,正选择基因可能与物种的生态适应性有关。
    Abstract:
      Objective  Characteristics and phylogeny of chloroplast genomes of the medicinally and economically valuable species in Panax genus were studied.
      Methods  Using bioinformatics software, the properties, repeats, structural variation, evolution, and phylogeny of the genomes of chloroplasts from 14 ginseng species were analyzed.
      Results   The genomes consisted of typical quadripartite structure with 114 unique genes. The long repeats in them were mainly of palindromic and forward types with a length between 30 bp and 39 bp. The simple sequence repeats were largely A/T type and most abundantly mononucleotides. No gene rearrangement occurred in the genomes was observed. The boundary between the inverted repeat region and the single copy region was highly conserved. Of the 12 regions with highly variable nucleotides, 7 were in the large and 5 in the small single copy region. Indicated by the dN/dS ratios, the positive selection could occur on clpP, ycf1, and ycf2 with unknown functions. The phylogenetic analysis showed that P. stipulenatus and P. trifolius were in the basal lineage, the tetraploid P. ginseng and P. quinquefolius separated from other diploid species, while P. notoginseng, P. japonicus, and P. vietnamensis closely related.
      Conclusion  The chloroplasts of the ginseng species examined were basically same in number and order of genomes, conservative in structure, but divert in number and type of repeats. The nucleotide polymorphism of the chloroplasts was higher in single copy region than inverted repeat regions. The positive selection genes identified in the study might result from the ecological adaptation of these Panax species.
  • 【研究意义】百合叶烧病是一种生理性病害,国内外百合种植过程中普遍发生,严重影响切花百合和盆栽百合生产质量。其发病症状表现为百合生长至30~40 cm,花蕾出现前,顶部6~10片新叶离叶尖约2 cm处出现灰白色病斑,后期逐渐向叶尖蔓延,最后变成焦枯状。百合叶烧病具有显著的品种特异性,但目前尚未发现与叶烧病存在紧密联系的品种特征[1],因此探索百合叶烧病发病机理,对百合新种质创制和栽培技术创新具有重要意义。【前人研究进展】前人研究发现,通过剪掉一半刚展开的下部叶片[2]、在发病之前喷施氯化钙和硝酸钙溶液[3]、通过手动展开尚未展开的新叶和降低栽培环境的湿度[4]等方法能够降低叶烧病的发生率,同时施用生根剂、微生物菌肥和使用合适的栽培基质均能有效地降低叶烧病的发生[5-7]。【本研究切入点】目前,百合叶烧病发病原因及防治方法等相关研究已较为深入,其中由缺钙导致叶烧病发生已被确认,但由于钙参与多项植物生理调节过程,如何确定叶烧病发生分子机理,以及缺钙导致哪些代谢途径受阻从而产生叶烧病,是今后选育抗叶烧病品种的重要研究基础。【拟解决的关键问题】通过扫描电镜和投射电镜观察东方百合Tarrango正常叶片、轻度叶烧叶片和重度叶烧叶片超微结构的差异,并通过比较东方百合Tarrango正常叶片、叶烧叶片、正常叶片喷钙和叶烧叶片喷钙4种处理的转录组测序数据,以期探索与叶烧病发病相关的分子机理和关键调控基因。

    以荷兰进口的Tarrango百合种球为试验材料,种植于连云港市农业科学院东辛农场实验基地日光温室,Tarrango百合生长至现蕾期,对部分百合叶烧叶片和正常叶片喷施30 mmol·L−1 硝酸钙叶面肥一次,其余百合喷施等量清水。24 h后分别取正常叶片(TarCK)、叶烧叶片(TNCK)、叶面喷钙正常叶片(TarCa)和叶面喷钙叶烧叶片(TNCa)4个处理,干冰冷藏送样检测,每个处理生物学重复3次。

    上述4个处理中,取每个处理叶片混合样品1 g,参照TaKaRA全RNA提取试剂操作说明进行叶片总RNA提取。

    百合叶片cDNA文库构建及测序均委托苏州金唯智生物科技有限公司完成。

    百合叶片转录组测序及对获得的数据库 Unigene 的全面分析和注释,均委托苏州金唯智生物科技有限公司完成。

    采集Tarrango正常叶片、轻度发病叶烧叶片和重度发病叶烧叶片(图1),无菌水漂洗干净后,手术刀裁成3 mm×3 mm大小,置于电镜固定液中固定2 h,再转移至4 ℃保存,4 ℃冰袋运输送样至武汉赛维尔生物科技有限公司。

    图  1  不同叶烧程度百合叶片
    注:A,百合Tarrango正常叶片;B,百合Tarrango轻度叶烧叶片;C,百合Tarrango重度叶烧叶片。图2同。
    Figure  1.  Leaves from different degrees of ULN-infection
    Note: A: Leaf from normal lily plant; B: Leaf from lily plant mildly infected by ULN; C: Leaf from lily plant severely infected by ULN. Same for Fig. 2.

    图2所示,近轴面表皮层均无气孔分布,其中Tarrango正常叶片和Tarrango轻微叶烧叶片的上表皮细胞横直径为500 μm。而Tarrango重度叶烧叶片上表皮细胞发生严重皱缩,其上皮细胞的横直径只有312.5 μm。轻度叶烧时,百合叶片上表皮细胞出现轻微的收缩,重度叶烧时,百合叶片表皮细胞表面出现褶皱痕迹。

    图  2  百合叶片近轴面超微结构
    Figure  2.  Ultrastructure of lily leaves in adaxial view

    图3所示,百合叶片远轴面表皮层分布了大量气孔,气孔数量最多的是Tarrango重度叶烧叶片(图3-A),其次为Tarrango轻度叶烧叶片(图3-B)和Tarrango正常叶烧叶片(图3-C)叶片。Tarrango正常叶片、Tarrango轻微叶烧叶片和Tarrango重度叶烧叶片气孔直径大小基本一致,均在400 μm左右。Tarrango轻度叶烧叶片下表皮层便发生皱缩现象,重度叶烧叶片皱缩程度更加严重。

    图  3  百合叶片远轴面超微结构
    注:A,百合Tarrango重度叶烧叶片;B,百合Tarrango轻度叶烧叶片;C,百合Tarrango正常叶片。
    Figure  3.  Ultrastructure of lily leaves in abaxial view
    Note: A, Leaf from lily plant severely infected by ULN; B, Leaf from lily plant mildly infected by ULN; C, Leaf from normal lily plant.

    正常叶片叶肉细胞(图4-A、B)和轻度叶烧叶肉细胞(图4-C、D)液泡较大,叶绿体分布在边缘。重度叶烧叶片的叶肉细胞由于液泡失水,叶绿体分布在整个细胞,细胞较为规则;重度叶烧细胞由于失水,整个细胞皱缩,形状不规则(图4-E、F)。在叶烧病发展过程中,叶绿体结构未发生太大变化,基粒垛叠层数较多且排列规律,3个处理中叶绿体均含有数量不等的淀粉粒。但重度叶烧叶片叶肉细胞中,线粒体数量明显较少。

    图  4  百合叶片透射电镜下超微结构
    注:A和B:百合Tarrango正常叶片;C和D:百合Tarrango轻度叶烧叶片;E和F:百合Tarrango重度叶烧叶片。
    Figure  4.  Ultrastructure of lily leaves shown by TEM
    Note: A and B: normal leaf of lily Tarrango; C and D: mildly ULN leaf of Lily Tarrango; E and F: severely Lily ULN leaf of Lily Tarrango.

    使用软件Cutadapt对测序原始数据(Pass filter data)去除接头以及低质量序列,获得后续信息分析用的过滤数据(Clean data)。4个处理12个文库产生了541 393 662条序列,约80.68 Gb转录组数据,Unigene平均长度在148.63 ~149.00 bp,GC含量变化范围为49.17%~52.32%(表1)。由表2可以看出,转录组数据经组装产生了19 585 575个重叠群,349537条unigenes,平均长度为513.25 bp。在所有unigenes序列中,序列长度小于500 bp的占75.92%(表3)。Unigene注释分析显示有124 405 unigenes获得注释,占unigenes总数的35.59%,其中获得注释较多的数据库分别是Nr注释121 501(34.76%)、COG注释49 594条(14.19%)、Swissport注释72 421条(20.72%)和KEGG注释17 051条(4.88%)。

    表  1  12个cDNA文库的过滤数据
    Table  1.  Clean data of 12 cDNA library
    样品
    Sample
    平均长度
    Average length/bp
    总序列数
    The total number of sequences
    总碱基数
    Total base number /bp
    Q20含量
    Q20 content /%
    Q30含量
    Q30 content /%
    GC含量
    GC /%
    TarCK1148.7046691744694303135598.1194.3250.55
    TarCK2148.7749717384739652791198.2694.6749.80
    TarCK3148.6340433794600957272798.1594.3552.27
    TarCa1148.7447758784710349344598.1594.4451.41
    TarCa2148.8740229314598883497998.0794.3052.04
    TarCa3149.0046500744692879017598.0794.2851.59
    TNCK1148.9843959714654924436498.1594.4250.78
    TNCK2148.7940479744602288169798.2394.5949.17
    TNCK3148.8745992514684684766198.0894.2149.91
    TNCa1149.0044762836666945284698.1094.4152.32
    TNCa2148.9646342564690323371598.0494.1551.03
    TNCa3148.8948524526722485839598.0994.3152.03
    合计 Total54139366280686769270
    下载: 导出CSV 
    | 显示表格
    表  2  转录组序列组装分析
    Table  2.  Summary of transcriptome assembly
    序列类型
    Sequence type
    重叠群
    Contig
    序列
    Unigene
    最短序列长度 Minimum sequence Length/bp 25 201
    最长序列长度 Maximum sequence length/bp 15 734 11 377
    序列平均长度 Mean sequence length/bp 53.76 513.25
    N50长度 N50 length/bp 48 686
    (A+T)/% 51.94 55.72
    (C+G)/% 48.06 44.28
    序列总数 The total number of sequences 19 585 575 349 537
    总碱基数量 Total base number/bp 1 052 959 813 179 400 360
    下载: 导出CSV 
    | 显示表格
    表  3  Unigene 的长度及数量统计
    Table  3.  Unigene length and quantity statistics
    长度
    Length/bp
    数量
    Number
    比例
    Percentage/%
    <200 0 0.00
    200~500 265 367 75.92
    500~1 000 44113 12.62
    1 000~1 500 17 752 5.08
    1 500~2 000 10 495 3.00
    ≥2 000 11 809 3.38
    总数 Total 349 537 100
    下载: 导出CSV 
    | 显示表格

    对4组处理转录组数据进行层次聚类(Hierarchical clustering)分析,喷钙2个处理TarCa与TNCa基因表达模式相近,并且与喷清水2个处理TarCK与TNCK基因表达模式存在显著区别,通过基因表达量可以将差异表达基因划分成A、B两个簇(图5-A),同时通过对转录组数据分组对比分析发现,TarCK/TarCa比较中差异表达基因最多,总数为4 816个,其中上调表达基因2 419个,下调表达基因2 397个;其次TNCK/TNCa比较中差异表达基因2 782个,其中上调表达基因1 090个,下调表达基因1 692个;TarCK/TNCK比较中差异表达基因822个,其中上调表达基因399个,下调表达基因423个;TarCa/TNCa比较中差异表达基因最少,总数为113个,其中上调表达基因56个,下调表达基因57个(图5-B)。

    图  5  差异表达基因的表达谱分析
    注:A,差异表达基因的聚类分析;B,差异表达基因的数量;C,差异表达基因的主成分分析;D,差异基因维恩图分析。
    Figure  5.  Expression profiling of differentially expressed genes
    Note: A: Cluster analysis on differentially expressed genes; B: Number of differentially expressed genes; C: Principal component analysis on differentially expressed genes; D: Venn diagram of differential genes.

    通过PCA(Principal Component Analysis)分析发现,TarCa与TNCa两个处理的重复组间的变异较小,并且两个处理间的差异性也较小,而TarCK与TNCK两个处理间不但处理间的差异性较大,重复组间的变异也比较大(图5-C)。同时,在4组对照分析中,发现了特异的和共同的差异表达基因,共发现7 185个差异表达基因,包括5 860个特异差异表达基因和1 325个共同差异表达基因(图5-D)。其中TarCK/TarCa与TNCK/TNCa共差异表达基因最多,为991个;其次为TarCK/TNCK与TarCK/TarCa共差异表达基因为230个和TNCK/TNCa与TarCK/TNCK共差异表达基因为96个,TarCa/TNCa与TarCK/TNCK共差异表达基因最少,只有1个,通过上述数据表明,喷钙处理能显著降低叶烧叶片与正常叶片的差异表达基因数量。

    通过GO富集分析对差异表达基因进行生物学功能研究,在错误发现率FDR<0.01时,25个GO条目富集在TarCa/TNCa,25个GO条目富集在TarCK/TNCK,31个GO条目富集在TarCK/TarCa,31个GO条目富集在TNCK/TNCa。有18个GO条目在4组对比分析中均有富集,其中,“催化活性” “结合”和“代谢过程”是富集基因最多的GO条目。在4组对比分析中有5个特异性GO条目,其中“多细胞生物过程”和“繁殖”GO条目仅在TarCK/TarCa中富集,“突触部分”GO条目仅在TNCK/TNCa中富集,“细胞外基质”和“细胞外基质成分”GO条目仅在TarCa/TNCa中富集,TarCK/TNCK无特异性GO条目(图6)。

    图  6  差异表达基因的GO富集分析
    注:1,催化活性;2,结合;3,转运活性;4,结构分子活性;5,电子载体;6,核酸结合转录因子活性;7,酶调节活性;8,抗氧化活性;9,分子传感器活性;10,细胞组分;11,细胞器;12,膜部分;13,细胞器部分;14,细胞膜;15,高分子复合物;16,胞外区;17,类核;18,细胞连接;19,代谢过程;20,细胞过程;21,单一生物过程;22,生物调节;23,应激反应;24,定位;25,发育过程;26,多生物过程;27,免疫系统过程;28,组织细胞组成或生物起源;29,生殖过程;30,多细胞生物过程;31,繁殖;32,细胞外区域部分;33,细胞外基质;34,细胞外基质成分;35,运动;36,生长;37,突触部分。
    Figure  6.  GO enrichment analysis on differentially expressed genes
    Note: 1: catalytic activity; 2: binding; 3: transporter activity; 4: structural molecule activity; 5: electron carrier activity; 6: nucleic acid binding transcription factor activity; 7: enzyme regulator activity; 8: antioxidant activity; 9: molecular transducer activity; 10: cell part; 11: organelle; 12: membrane part;13: organelle part; 14: membrane; 15: macromolecular complex; 16: extracellular region; 17: nucleoid; 18: cell junction; 19: metabolic process; 20: cellular process; 21: single-organism process; 22: biological regulation; 23: response to stimulus; 24: localization; 25: developmental process; 26: multi-organism process; 27: immune system process; 28: cellular component organization or biogenesis; 29: reproductive process; 30: multicellular organismal process; 31: reproduction; 32: extracellular region part; 33: extracellular matrix; 34: extracellular matrix component; 35: locomotion; 36: growth; 37: synapse part.

    在植物体内,Ca2+参与的代谢调控十分复杂,通过KEGG代谢通路分析,在本次转录组测序中“剪接体” “代谢途径” “丙酮酸代谢” “次生代谢产物的生物合成”和“光合作用生物的碳固定作用”代谢途径在4组试验处理对比分析中都有基因富集,经过差异基因COG分析,4组试验处理对比分析共有25个COG分组,其中4组试验处理共有COG功能分类22个,包括“细胞外结构” “信号转导机制” “未知功能基因” “细胞内运输、分泌和囊泡运输” “翻译、核糖体结构和生物发生” “细胞壁/膜/信封生源论” “一般功能预测基因” “复制、重组和修复” “碳水化合物运输和代谢” “无机离子的转运和代谢” “细胞骨架” “氨基酸的运输和代谢” “脂质运输与代谢” “细胞周期控制,细胞分裂,染色体分裂” “能源生产与转换” “染色质结构和动力学” “翻译后修饰,蛋白质转换,伴侣” “辅酶运输和代谢” “RNA加工和修饰” “次级代谢产物生物合成、运输和分解代谢”。

    结合扫描电镜和透射电镜分析,本研究重点关注叶烧病发病过程和喷施钙处理中,细胞膜通透性相关基因的表达变化。如表4所示,在百合叶烧病发病过程中即TarCK/TNCK对比分析中,显著下调基因有参与脱落酸信号的负调控的FOLK基因(Farnesol kinase 法呢醇激酶)[8]、影响脂类物质生物合成和细胞膜稳定性的PLD1_2基因(phospholipase D1/2 磷脂酶D1/2)[9]ATPeF1B基因(F-type H+-transporting ATPase subunit bet膜上ATP合酶)和KCS基因(3-ketoacyl-CoA synthase 3-酮脂酰辅酶A合酶)[10]。同时CALM基因(Calmodulin 钙调蛋白)[11]ENO基因(enolase 烯醇酶)[12]pel基因(Pectate lyase 果胶酸裂解酶)[13]等响应钙离子信号和影响木质素和果胶生物合成的基因下调。在百合叶烧病发病过程中表达量上调的基因有促进生成脱落酸的AAO基因(abscisic-aldehyde oxidase 脱落醛氧化酶)[14]

    表  4  显著差异表达基因
    Table  4.  Significantly differentially expressed genes
    对照组
    Group
    基因编号
    Gene ID
    差异倍数
    Log2 fold
    change
    基因名称
    KO_name
    基因定义
    KO_definition
    TarCK/TNCKDN74111_c0_g1_i2−6.76FOLK法呢醇醇激酶 Farnesol kinase
    TarCK/TNCKDN42826_c0_g2_i2−6.56PLD1_2 磷脂酶D1/2 Phospholipase D1/2
    TarCK/TNCKDN73032_c0_g2_i1−3.14ATPeF1B膜上ATP合酶 F-type H+-transporting ATPase subunit beta
    TarCK/TNCKDN59908_c0_g1_i2−1.88KCS3-酮脂酰辅酶A合成酶基因 3-ketoacyl-CoA synthase
    TarCK/TNCKDN88233_c0_g1_i2−1.08ENO烯醇酶 Enolase
    TarCK/TNCKDN45172_c0_g1_i1−1.00CALM钙调蛋白 Calmodulin
    TarCK/TNCKDN75575_c0_g1_i16.00AAO3脱落醛氧化酶 Abscisic-aldehyde oxidase
    TNCK/TNCaDN75425_c0_g1_i6−4.83ABFABA响应元件结合因子 ABA responsive element binding factor
    TNCK/TNCaDN89025_c0_g1_i3−2.34MFP2烯酰辅酶A水合酶/3-羟酰辅酶A脱氢酶 Enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase
    TNCK/TNCaDN10149_c0_g1_i11.09AUX1生长素流入载体蛋白 Auxin influx carrier
    TNCK/TNCaDN36010_c0_g1_i11.20CALM钙调蛋白 Calmodulin
    TNCK/TNCaDN81084_c0_g4_i21.29CPK钙依赖性蛋白激酶 Calcium-dependent protein kinase
    TNCK/TNCaDN132576_c0_g1_i11.64CML钙结合蛋白CML Calcium-binding protein CML
    TNCK/TNCaDN55671_c1_g1_i82.01PLD1_2磷脂酶D1/2 Phospholipase D1/2
    TNCK/TNCaDN1778_c0_g3_i12.45SORDL-艾杜糖醇-2-脱氢酶 L-iditol 2-dehydrogenase
    TNCK/TNCaDN48191_c0_g1_i12.61EIN2乙烯不敏感蛋白2 Ethylene-insensitive protein 2
    下载: 导出CSV 
    | 显示表格

    而在叶烧叶片喷钙后即TNCK/TNCa对比分析中,表达量上调的基因有CALM基因、CPK基因(Calcium-dependent protein kinase 钙依赖性蛋白激酶)、EIN2基因 (ethylene-insensitive protein 2 乙烯不敏感蛋白2)[15]AUX1基因(Auxin influx carrier 生长素流入载体)[16]PLD1_2基因和果糖和甘露糖的代谢途径的SORD基因(L-iditol 2-dehydrogenase L-艾杜糖醇-2-脱氢酶)[17]。与此同时下调表达的基因有ABF基因(ABA responsive element binding factor ABA响应元件结合因子)[18]和参与脂肪酸降解途径的MFP2基因 (Enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase烯酰辅酶A水合酶/3-羟酰辅酶A脱氢酶)[19]

    通过百合叶片扫描电镜分析,叶片近轴面表皮细胞大小随叶烧程度的加深而减小,重度叶烧时,表皮细胞发生皱缩,表明此时表皮细胞失水。叶片远轴面表皮细胞在轻度叶烧时发生皱缩,而近轴面表皮细胞在重度叶烧时才发生皱缩,说明叶烧症状先出现在远轴面一侧。通过透射电镜分析,百合叶片在发生叶烧的过程中,液泡失水是导致表皮细胞体积缩小的原因。因此,推测细胞膜和液泡膜的通透性发生改变是导致百合叶片叶烧病症状的原因。

    差异表达基因的PCA分析发现,正常叶片3个重复处理和叶烧叶片3个重复处理之间的差异性都很大,而正常叶片喷钙后3各处理和叶烧叶片喷钙后3个处理之间差异性较小。同时在对比分析中也发现,TarCa/TNCa比较组差异表达基因显著少于TarCK与TNCK,都说明喷钙处理能降低正常叶片和叶烧叶片之间的差异表达基因数量,甚至喷钙处理能够降低正常叶片和叶烧叶片之间差异表达基因数量,说明喷钙处理能缓解叶烧病的发病过程,这与白菜干烧心[20-21]、莴苣[22]等缺钙生理性病害的一致。

    在分析单个基因表达中发现,在叶烧病发病过程中,响应钙离子信号CALM基因显著下调,而喷钙处理后CALMCPK基因显著上调,说明CALM基因是叶烧病发病过程中的主要信号传导基因。同时,叶烧病发病过程中促进生成脱落酸的AAO基因显著上调,叶烧叶片喷钙后乙烯信号调控基因EIN2和生长素输入载体基因AUX1表达量上调,表明叶烧病发病可能受脱落酸、乙烯和生长素的调控。同时,叶烧病发病过程中,在细胞膜和液泡膜稳定相关基因phospholipase D1/2ATPeF1BKCS等表达均显著下调。而喷钙后phospholipase D1/2 显著上调,这与拟南芥中PLD及其产物磷脂酸(PA)调控ABA响应的负调控因子[23-24]结果一致。

    钙在植物生理活动中,既起着结构成分的作用,也具有酶的辅助因素功能,它能维持细胞壁、细胞膜及膜结合蛋白的稳定性,参与细胞内各种生长发育的调控作用。因此目前虽然基本证实百合叶烧病是由缺钙导致,但其具体的致病分子机理仍不能十分明晰,今后仍需开展相关基因分析验证工作,为百合分子育种提供理论支撑。

  • 图  1   人参属物种叶绿体基因组长重复序列类型及分布

    A:正向、回文、反向、互补重复数量;B:长重复类型及数量。

    Figure  1.   Types and distribution of long repeats in chloroplast genomes of Panax species

    A: Counts of forward, palindromic, reverse and complementary repeats; B: types and counts of long repeats.

    图  2   人参属物种叶绿体基因组SSR位点类型及分布

    A:单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸重复数量;B:SSR类型及数量。

    Figure  2.   Types and distribution of SSRs in chloroplast genomes of Panax species

    A: Counts of mono-, di-, tri-, tetra-, penta- and hexanucleotides; B: types and counts of SSR.

    图  3   人参属物种叶绿体基因组LSC、SSC和IRs边界比较

    Figure  3.   Borders of LSC, SSC, and IRs in chloroplast genomes of Panax species

    图  4   人参属物种叶绿体基因组序列比较

    Figure  4.   Sequences of chloroplast genomes of Panax species

    图  5   人参属物种叶绿体基因组序列多态性分析

    Figure  5.   Nucleotide diversity of chloroplast genomes of Panax species

    图  6   人参属叶绿体蛋白编码基因dN/dS分析

    Figure  6.   dN/dS ratios on protein coding genes of chloroplasts of Panax species

    图  7   基于IQ-TREE软件构建的人参属物种叶绿体基因组系统发育树

    Figure  7.   Phylogenetic tree of chloroplast genes of Panax species based on IQ-TREE

    表  1   人参属物种叶绿体基因组特征

    Table  1   Chloroplast genomes of Panax species

    物种 Species登录号 Accession长度 Length/bpGC含量 GC content/%
    基因组 GenomeLSCSSCIR基因组 GenomeLSCSSCIR
    人参
    P. ginseng
    MK408938 156 241 86 128 18 077 26 018 38.07 36.27 32.18 43.10
    竹节参
    P. japonicus
    KP036469 156 188 86 199 18 013 25 988 38.07 36.29 32.21 43.05
    疙瘩七
    P. japonicus var. bipinnatifidus
    MK408962 156 244 86 186 18 006 26 026 38.06 36.28 32.21 43.05
    珠子参
    P. major
    MN496312 156 402 86 189 18 007 26 103 38.07 36.28 32.22 43.05
    三七
    P. notoginseng
    MK408945 156 319 86 157 18 004 26 079 38.07 36.27 32.23 43.07
    假人参
    P. pseudoginseng
    MW145449 156 074 86 124 18 008 25 971 38.06 36.27 32.22 43.06
    西洋参
    P. quinquefolius
    MK408953 156 070 86 077 17 993 26 000 38.07 36.27 32.22 43.08
    屏边三七
    P. stipuleanatus
    MK408965 156 007 86 083 18 150 25 887 38.04 36.26 32.07 43.08
    三叶参
    P. trifolius
    MF100782 156 157 86 322 18 047 25 894 38.08 36.27 32.26 43.10
    越南参
    P. vietnamensis
    KP036470 155 993 86 178 17 935 25 940 38.05 36.27 32.22 43.02
    野三七
    P. vietnamensis var. fuscidiscus
    MT798585 156 284 86 171 17 971 26 071 38.06 36.28 32.27 42.98
    越南参变种
    P. vietnamensis var. langbianensis
    MT798583 155 984 86 174 17 934 25 938 38.05 36.27 32.21 43.03
    峨眉三七
    P. wangianus
    MK408964 156 189 86 190 17 969 26 015 38.07 36.29 32.21 43.03
    姜状三七
    P. zingiberensis
    MK408969 156 192 86 116 17 966 26 055 38.07 36.31 32.27 43.00
    下载: 导出CSV

    表  2   基于位点模型的人参属叶绿体蛋白编码基因正选择分析

    Table  2   Potential positive selection test on chloroplast genomes of Panax species based on site model

    基因
    Gene
    M1 vs M2M7 vs M8正选择位点
    Positively selected sites
    2ΔlnLP2ΔlnLP
    accD 2.39 3.0×10-1 2.47 2.9×10-1 139 Q, 0.505; 141 S, 0.517; 144 R, 0.528; 209 A, 0.856; 264 E, 0.504; 364 I, 0.507; 372 L, 0.526; 494 Q, 0.855
    atpF 3.37 1.9×10-1 3.42 1.8×10-1 14 W, 0.541; 77 Q, 0.537; 158 G, 0.854
    cemA 7.48 2.4×10-2 7.48 2.4×10-2 14 A, 0.547; 22 W, 0.538; 54 K, 0.536; 102 D, 0.533; 103 R, 0.544; 118 V, 0.973*; 205 F, 0.531; 208 W, 0.540
    clpP 13.40 1.2×10-3 13.40 1.2×10-3 38 P, 0.990*; 39 V, 0.622; 40 A, 0.935; 41 S, 0.612; 138 G, 0.629; 160 Q, 0.626
    matK 19.22 6.7×10-5 19.25 6.6×10-5 83 R, 0.994**
    ndhD 0.77 6.8×10-1 0.99 6.1×10-1 22 F, 0.830; 41 I, 0.829
    ndhF 19.81 5.0×10-5 20.29 3.9×10-5 17 P, 0.597; 123 R, 0.592; 133 T, 0.583; 223 F, 0.959*; 421 I, 0.964*; 463 Q, 0.591; 483 R, 0.569; 499 H, 0.552; 502 A, 0.965*; 511 Q, 0.591; 512 M, 0.526; 532 K, 0.559; 534 I, 0.962*; 572 N, 0.543; 598 D, 0.573; 606 F, 0.548; 621 L, 0.630; 641 I, 0.549; 642 G, 0.597; 657 G, 0.594; 670 A, 0.963*; 677 I, 0.532; 703 S, 0.548; 737 Y, 0.964*; 743 F, 0.537; 745 D, 0.958*; 746 L, 1.000**
    rbcL 15.94 3.5×10-4 16.10 3.2×10-4 225 L, 0.632; 226 Y, 0.969*; 230 A, 0.635; 270 I, 0.866; 281 A, 0.644; 328 S, 0.999**; 353 F, 0.584; 439 R, 0.968*; 472 V, 0.609; 474 I, 0.621; 478 V, 0.714
    rpl2 0 1 0 1 99 K, 0.651; 265 D, 0.650; 267 L, 0.652
    rpoA 14.53 7.0×10-4 14.56 6.9×10-4 34 L, 0.506; 256 E, 0.991**; 264 N, 0.999**; 272 S, 0.533; 320 A, 0.849; 337 L, 0.537
    rpoB 0.90 6.4×10-1 0.90 6.4×10-1 37 Y, 0.505; 165 R, 0.502; 193 R, 0.502; 295 I, 0.502; 365 T, 0.504; 459 S, 0.502; 695 K, 0.506; 735 T, 0.504; 935 D, 0.832
    rpoC2 0 1 0 1 85 Q, 0.736
    rps12 0 1 0.02 9.9×10-1 25 R, 0.502
    ycf1 75.81 0 75.78 0 205 K, 1.000**; 206 Y, 0.999**; 288 I, 0.876; 532 T, 0.803; 533 K, 0.956*; 604 R, 0.801; 624 R, 0.825; 668 I, 0.779; 685 W, 0.837; 699 V, 0.824; 701 Q, 0.802; 706 V, 0.814; 720 V, 0.856; 722 T, 0.814; 723 D, 0.808; 731 R, 0.982*; 733 K, 0.809; 734 I, 0.996**; 736 L, 0.855; 737 I, 0.803; 751 N, 0.760; 809 A, 0.828; 906 N, 0.768; 914 E, 0.795; 915 L, 0.788; 929 L, 0.835; 957 K, 0.979*; 1030 E, 0.979*; 1116 K, 0.804; 1172 M, 0.731; 1186 Q, 0.798; 1206 Q, 0.798; 1502 Q, 0.754; 1601 I, 1.000**; 1616 D, 0.773;
    1631 R, 0.814; 1652 R, 0.795; 1665 V, 0.738; 1685 E, 0.978*; 1710 I, 0.979*; 1739 R, 0.793
    ycf2 14.95 5.7×10-4 14.95 5.7×10-4 30 R, 0.767; 56 R, 0.770; 103 L, 0.765; 126 S, 0.765; 248 S, 0.769; 285 L, 0.765; 320 L, 0.766; 332 R, 0.764; 432 V, 0.765; 466 Y, 0.765; 573 I, 0.764; 598 L, 0.766; 606 M, 0.759; 759 F, 0.763; 850 S, 0.965*; 943 E, 0.764; 1037 P, 0.766; 1050 F, 0.765; 1064 S, 0.763; 1074 I, 0.965*; 1093 L, 0.767; 1101 N, 0.964*; 1171 W, 0.767; 1173 S, 0.765; 1245 P, 0.766; 1265 D, 0.762; 1309 D, 0.762; 1344 R, 0.764; 1422 L, 0.965*; 1431 F, 0.763; 1522 D, 0.767; 1550 Y, 0.766; 1656 N, 0.763; 1717 S, 0.768; 1799 R, 0.769; 2045 E, 0.764
    *和**分别表示正选择位点概率> 95%和> 99%。
    * and ** indicate that the probabilities of positively selected sites are > 95% and > 99%, respectively.
    下载: 导出CSV
  • [1]

    WEN J, ZIMMER E A. Phylogeny and biogeography of Panax L. (The Ginseng Genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA [J]. Molecular Phylogenetics and Evolution, 1996, 6(2): 167−177. DOI: 10.1006/mpev.1996.0069

    [2]

    NGUYEN V B, LINH GIANG V N, WAMINAL N E, et al. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers [J]. Journal of Ginseng Research, 2020, 41(1): 135−144. DOI: 10.1016/j.jgr.2018.06.003

    [3]

    NGUYEN V B, PARK H S, LEE S C, et al. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences [J]. Journal of Agricultural and Food Chemistry, 2017, 65(30): 6298−6306. DOI: 10.1021/acs.jafc.7b00925

    [4]

    LI S, WANG P, YANG W Z, et al. Characterization of the components and pharmacological effects of mountain-cultivated ginseng and garden ginseng based on the integrative pharmacology strategy [J]. Frontiers in Pharmacology, 2021, 12: 659954. DOI: 10.3389/fphar.2021.659954

    [5]

    SHIN B K, KWON S W, PARK J H. Chemical diversity of ginseng saponins from Panax ginseng [J]. Journal of Ginseng Research, 2015, 39(4): 287−298. DOI: 10.1016/j.jgr.2014.12.005

    [6]

    CHOI H I, KIM N H, LEE J, et al. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags [J]. Genetic Resources and Crop Evolution, 2013, 60(4): 1377−1387. DOI: 10.1007/s10722-012-9926-3

    [7]

    YANG Z J, LIU G Z, ZHANG G H, et al. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis [J]. Plant Biotechnology Journal, 2021, 19(5): 869−871. DOI: 10.1111/pbi.13558

    [8]

    LIU C, CHEN H H, TANG L Z, et al. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae)[J]. Plant Diversity, 2022 , 44 (4): 377 − 388. DOI: 10.1016/j.pld.2021.11.009

    [9] 刘潮, 韩利红, 彭悦, 等. 黄丹木姜子叶绿体基因组特征分析 [J]. 南方农业学报, 2022, 53(1):12−20. DOI: 10.3969/j.issn.2095-1191.2022.01.002

    LIU C, HAN L H, PENG Y, et al. Characteristics of chloroplast genome of Litsea elongata(wall. ex nees)Benth. et hook. F [J]. Journal of Southern Agriculture, 2022, 53(1): 12−20.(in Chinese) DOI: 10.3969/j.issn.2095-1191.2022.01.002

    [10] 刘潮, 韩利红, 代小波, 等. 辣椒属叶绿体基因组特征及进化 [J]. 热带作物学报, 2022, 43(3):447−454. DOI: 10.3969/j.issn.1000-2561.2022.03.002

    LIU C, HAN L H, DAI X B, et al. Characteristics and phylogenetics of the complete chloroplast genomes of Capsicum species [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 447−454.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2022.03.002

    [11]

    YU J J, FU J, FANG Y P, et al. Complete chloroplast genomes of Rubus species (Rosaceae) and comparative analysis within the genus [J]. BMC Genomics, 2022, 23(1): 32. DOI: 10.1186/s12864-021-08225-6

    [12] 刘潮, 唐利洲, 韩利红. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育 [J]. 林业科学, 2021, 57(12):167−174.

    LIU C, TANG L Z, HAN L H. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Scientia Silvae Sinicae, 2021, 57(12): 167−174.(in Chinese)

    [13]

    LIU C K, YANG Z Y, YANG L F, et al. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae) [J]. Plant Diversity, 2018, 40(6): 265−276. DOI: 10.1016/j.pld.2018.11.001

    [14] 岳杰. 四种人参属植物叶绿体全基因组结构及其系统发育分析[D]. 汉中: 陕西理工大学, 2021

    YUE J. Structural and phylogenetic analyses of the complete chloroplast genomes of four species within the genus Panax linn. [D]. Hanzhong: Shaanxi University of Technology, 2021. (in Chinese)

    [15]

    KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter: The manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633−4642. DOI: 10.1093/nar/29.22.4633

    [16]

    BEIER S, THIEL T, MÜNCH T, et al. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 2017, 33(16): 2583−2585. DOI: 10.1093/bioinformatics/btx198

    [17]

    AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics (Oxford, England), 2018, 34(17): 3030−3031. DOI: 10.1093/bioinformatics/bty220

    [18]

    FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA: Computational tools for comparative genomics[J]. Nucleic Acids Research, 2004, 32(Web Server issue): W273-W279.

    [19]

    KATOH K, ROZEWICKI J, YAMADA K D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization [J]. Briefings in Bioinformatics, 2019, 20(4): 1160−1166. DOI: 10.1093/bib/bbx108

    [20]

    ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets [J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. DOI: 10.1093/molbev/msx248

    [21]

    XU B, YANG Z H. PAMLX: A graphical user interface for PAML [J]. Molecular Biology and Evolution, 2013, 30(12): 2723−2724. DOI: 10.1093/molbev/mst179

    [22]

    MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era [J]. Molecular Biology and Evolution, 2020, 37(5): 1530−1534. DOI: 10.1093/molbev/msaa015

    [23]

    GANLEY A R D, KOBAYASHI T. Monitoring the rate and dynamics of concerted evolution in the ribosomal DNA repeats of Saccharomyces cerevisiae using experimental evolution [J]. Molecular Biology and Evolution, 2011, 28(10): 2883−2891. DOI: 10.1093/molbev/msr117

    [24]

    ZEB U, DONG W L, ZHANG T T, et al. Comparative plastid genomics of Pinus species: Insights into sequence variations and phylogenetic relationships [J]. Journal of Systematics and Evolution, 2020, 58(2): 118−132. DOI: 10.1111/jse.12492

    [25]

    ZHU B, QIAN F, HOU Y F, et al. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae) [J]. PLoS One, 2021, 16(3): e0248556. DOI: 10.1371/journal.pone.0248556

    [26]

    LI D M, YE Y J, XU Y C, et al. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses [J]. PLoS One, 2020, 15(7): e0236590. DOI: 10.1371/journal.pone.0236590

    [27]

    XU K W, LIN C X, LEE S Y, et al. Comparative analysis of complete Ilex (Aquifoliaceae) chloroplast genomes: Insights into evolutionary dynamics and phylogenetic relationships [J]. BMC Genomics, 2022, 23(1): 203. DOI: 10.1186/s12864-022-08397-9

    [28]

    KASHI Y, KING D G. Simple sequence repeats as advantageous mutators in evolution [J]. Trends in Genetics, 2006, 22(5): 253−259. DOI: 10.1016/j.tig.2006.03.005

    [29]

    HAN C Y, DING R, ZONG X Y, et al. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae [J]. BMC Genomics, 2022, 23(1): 84. DOI: 10.1186/s12864-022-08319-9

    [30]

    YAN J W, LI J H, YU L, et al. Comparative chloroplast genomes of Prunus subgenus Cerasus (Rosaceae): Insights into sequence variations and phylogenetic relationships [J]. Tree Genetics & Genomes, 2021, 17(6): 50.

    [31] 马孟莉, 张薇, 孟衡玲, 等. 草果叶绿体基因组特征及系统发育分析 [J]. 中草药, 2021, 52(19):6023−6031. DOI: 10.7501/j.issn.0253-2670.2021.19.025

    MA M L, ZHANG W, MENG H L, et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Amomum tsao-ko [J]. Chinese Traditional and Herbal Drugs, 2021, 52(19): 6023−6031.(in Chinese) DOI: 10.7501/j.issn.0253-2670.2021.19.025

    [32]

    KIM K J. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng nees) and comparative analysis of sequence evolution among 17 vascular plants [J]. DNA Research, 2004, 11(4): 247−261. DOI: 10.1093/dnares/11.4.247

    [33]

    LI R, MA P F, WEN J, et al. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications [J]. PLoS One, 2013, 8(10): e78568. DOI: 10.1371/journal.pone.0078568

    [34]

    TROFIMOV D, CADAR D, SCHMIDT-CHANASIT J, et al. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex [J]. Scientific Reports, 2022, 12: 1120. DOI: 10.1038/s41598-021-04635-4

    [35]

    YANG J, CHIANG Y C, HSU T W, et al. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan [J]. Scientific Reports, 2021, 11: 1152. DOI: 10.1038/s41598-020-80143-1

    [36]

    NIU Y F, GAO C W, LIU J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes [J]. PeerJ, 2021, 9: e10774. DOI: 10.7717/peerj.10774

    [37]

    GARUD N R, POLLARD K S. Population genetics in the human microbiome [J]. Trends in Genetics:TIG, 2020, 36(1): 53−67. DOI: 10.1016/j.tig.2019.10.010

    [38]

    JI Y H, LIU C K, YANG Z Y, et al. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae) [J]. Molecular Ecology Resources, 2019, 19(5): 1333−1345. DOI: 10.1111/1755-0998.13050

    [39]

    KIM N H, CHOI H I, KIM K H, et al. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag-simple sequence repeat bands in Panax ginseng Meyer [J]. Journal of Ginseng Research, 2014, 38(2): 130−135. DOI: 10.1016/j.jgr.2013.12.005

图(7)  /  表(2)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  170
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-29
  • 录用日期:  2022-03-30
  • 网络出版日期:  2022-08-28
  • 刊出日期:  2022-07-27

目录

/

返回文章
返回