• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪流行性腹泻病毒荧光RT-RAA检测方法的建立及初步应用

侯恩慧 陈秋勇 吴学敏 丘镜莉 吴仁杰 周伦江 刘玉涛 马玉芳 王隆柏

侯恩慧,陈秋勇,吴学敏,等. 猪流行性腹泻病毒荧光RT-RAA检测方法的建立及初步应用 [J]. 福建农业学报,2024,39(X):1−7
引用本文: 侯恩慧,陈秋勇,吴学敏,等. 猪流行性腹泻病毒荧光RT-RAA检测方法的建立及初步应用 [J]. 福建农业学报,2024,39(X):1−7
HOU E H, CHEN Q Y, WU X M, et al. Establishment and preliminary application of fluorescent RT-RAA diagnostic method for porcine epidemic diarrhea virus [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−7
Citation: HOU E H, CHEN Q Y, WU X M, et al. Establishment and preliminary application of fluorescent RT-RAA diagnostic method for porcine epidemic diarrhea virus [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−7

猪流行性腹泻病毒荧光RT-RAA检测方法的建立及初步应用

基金项目: 福建省科技计划公益类专项(2021R10260016);福建省科技重大专项(2021NZ029023);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021008)
详细信息
    作者简介:

    侯恩慧(1998 —),男,硕士,主要从事中西兽医结合与保健研究,E-mail:2054584054@qq.com

    通讯作者:

    马玉芳(1970 —),女,教授,主要从事中西兽医结合与动物保健,Email:myfau850@ sohu.com;王隆柏(1977 —),男,研究员,主要从事生猪疫病防控技术研究,E-mail:wanglongbai@163.com

  • 中图分类号: S855.3

Establishment and preliminary application of fluorescent RT-RAA diagnostic method for porcine epidemic diarrhea virus

  • 摘要:   目的  建立一种快捷、灵敏、简便检测猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)的RT-RAA检测方法,以提高猪流行性腹泻病毒临床检测效率。  方法  针对PEDV S基因片段保守区设计引物和探针,构建标准质粒PEDV-S,通过特异性、敏感性、重复性测定及条件优化,建立检测PEDV重组酶介导链置换核酸扩增荧光法(RT-RAA)。  结果  在42 ℃恒温作用20 min的条件下,建立的检测方法对检测猪传染性胃肠炎病毒(porcine transmissible gastroenteritis virus, TGEV)、猪瘟病毒(classical swine fever virus, CSFV)、伪狂犬病病毒(porcine pseudorabies virus, PRV)、猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)和猪轮状病毒(porcine rotavirus, PoRV)等猪源病毒均为阴性,猪流行性腹泻病毒(PEDV)为阳性;最低检出限为4.43×102拷贝·μL−1的标准质粒;重复性结果显示,相同浓度标准质粒的差异性很小;利用建立的RT-RAA方法检测40份猪病毒样本,阳性率均为7.5%(3/40),与实时荧光定量PCR检测结果相同。  结论  本研究建立的PEDV RT-RAA检测方法具有快速简便、耗时短、特异性高、灵敏度强和重复性好等特点,适用于对PEDV的快速诊断。
  • 图  1  引物及探针所在S基因保守区域

    Figure  1.  The conserved region of the S gene where the primers and probes are located

    图  2  PEDV S 基因PCR扩增

    M:DL2000 Marker;1~4:PEDV S 基因扩增;5:阴性对照。

    Figure  2.  PCR amplification of the PEDV S gene

    M:DL2000 Marker;1–4: PEDV S gene amplification; 5: negative control.

    图  3  荧光型RT-RAA引物筛选

    1:F3/R3;2:F3/R2;3:F1/R1;4:F2/R3;5:F3/R1;6:F1/R2;7:F2R2;8:F1/R3;9:F2/R1;10:阴性对照。

    Figure  3.  Fluorescent special-pull primer screening

    1: F3/R3; 2: F3/R2; 3: F1/R1; 4: F2/R3; 5: F3/R1; 6: F1/R2; 7: F2/R2; 8: F1/R3; 9: F2/R1; 10: negative control.

    图  4  荧光型RT-RAA反应温度的筛选

    1~3分别为42、39和37 ℃。

    Figure  4.  Screening of fluorescent RT-RAA reaction temperatures

    1–3was 42, 39 and 37 °C, respectively.

    图  5  荧光型RT-RAA反应时间的筛选

    1~3分别为反应20、25、17min。

    Figure  5.  Screening of fluorescent RT-RAA reaction time

    1–3 was 20, 25 and 17 min for reaction.

    图  6  荧光型RT-RAA特异性试验

    1:PEDV-S;2~8:TGEV、CSFV、PRV、PCV、PRRSV、PoRV、阴性对照。

    Figure  6.  Fluorescent RT-RAA specificity test

    1: PEDV-S; 2–8: TGEV, CSFV, PRV, PCV, PRRSV, PoRV, negative control.

    图  7  荧光型RT-RAA的重复性检测

    1~3:1×105拷贝·μL−1;4~6:1×103拷贝·μL−1;7~9:1×102拷贝·μL−1

    Figure  7.  Repeatability detection of fluorescent RT-RAA

    1–3: 1×105 copies·μL−1; 4–6: 1×103 copies·μL−1; 7–9: 1×102 copies·μL−1.

    图  8  荧光型RT-RAA敏感性试验

    1~7:标准质粒依次为106~100 拷贝·μL−1;8:阴性对照。

    Figure  8.  Fluorescence RT-RAA sensitivity test

    1–7: the standard plasmid was 106–100 copies·μL−1; 8: negative control.

    表  1  疑似猪流行性腹泻病料收集的来源信息

    Table  1.   Source information of sample collection for suspected porcine epidemic diarrhea

    地区
    Region
    样本数(份)/来源猪场(个)
    Samples/Farms
    宁德 Ningde 5/2
    三明 Sanming 6/2
    龙岩 Longyan 10/6
    漳州 Zhangzhou 8/3
    莆田 Putian 11/6
    合计 total 40/19
    下载: 导出CSV

    表  2  引物和探针

    Table  2.   Primers and probes

    名称
    Name
    序列(5′-3′)
    Sequence
    PEDV S-DF AAATCTGGCAGTATTGGCTAC
    PEDV S-DR ATCGGCTGAAAGAATGTCC
    PEDV S-F1 TATTCCCACCAACTTTAGTATGAGTATTAG
    PEDV S-F2 GTATTCCCACCAACTTTAGTATGAGTATTA
    PEDV S-F3 AGTATTCCCACCAACTTTAGTATGAGTATT
    PEDV S-R1 TAATGCTGACTCTATGGTCTTACATGCTGC
    PEDV S-R2 GTTGTAATGCTGACTCTATGGTCTTACATG
    PEDV S-R3 TGTAATGCTGACTCTATGGTCTTACATGCT
    PEDV S-P GACAGAATATTTACAGCTTTACAACACGCC(i6FAMdT)(THF)(iBHQ1dT)TAGTGTTGATTGTGC-C3spacer
    下载: 导出CSV

    表  3  临床样本的检测

    Table  3.   Detection of clinical samples

    方法
    Method
    阳性样品
    Number of
    positives/份
    阴性样品
    Number of
    negatives/份
    总数
    Total/份
    阳性率
    Positivity
    rate/%
    RT-RAA 3 37 40 7.5
    RT-qPCR 3 37 40 7.5
    下载: 导出CSV
  • [1] JUNG K, SAIF L J, WANG Q H. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control [J]. Virus Research, 2020, 286: 198045. doi: 10.1016/j.virusres.2020.198045
    [2] LEE C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus [J]. Virology Journal, 2015, 12: 193.
    [3] ZHOU Z J, QIU Y, GE X Y. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order [J]. Animal Diseases, 2021, 1(1): 5. doi: 10.1186/s44149-021-00005-9
    [4] ZHANG Y Z, CHEN Y W, ZHOU J, et al. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus-host interactions [J]. Viruses, 2022, 14(11): 2434. doi: 10.3390/v14112434
    [5] WU X H, LIU Y J, GAO L G, et al. Development and application of a reverse-transcription recombinase-aided amplification assay for porcine epidemic diarrhea virus [J]. Viruses, 2022, 14(3): 591.
    [6] PEWLAOO S, PHANTHONG S, KONG-NGOEN T, et al. Development of a rapid reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow method for detecting porcine epidemic diarrhoea virus [J]. Biology, 2022, 11(7): 1018. doi: 10.3390/biology11071018
    [7] LI G, WU M L, LI J H, et al. Rapid detection of porcine deltacoronavirus and porcine epidemic diarrhea virus using the duplex recombinase polymerase amplification method [J]. Journal of Virological Methods, 2021, 292: 114096. doi: 10.1016/j.jviromet.2021.114096
    [8] MAO L J, YING J X, SELEKON B, et al. Development and characterization of recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of monkeypox virus [J]. Viruses, 2022, 14(10): 2112. doi: 10.3390/v14102112
    [9] NIE M C, ZHOU Y C, LI F Q, et al. Epidemiological investigation of swine Japanese encephalitis virus based on RT-RAA detection method [J]. Scientific Reports, 2022, 12(1): 9392. doi: 10.1038/s41598-022-13604-4
    [10] ZHAO S, ZHANG Q Q, WANG X Y, et al. Development and performance of recombinase-aided amplification (RAA) assay for detecting Schistosoma haematobium DNA in urine samples [J]. Heliyon, 2023, 9(12): e23031. doi: 10.1016/j.heliyon.2023.e23031
    [11] REN J, ZU C C, LI Y, et al. Establishment and application of a TaqMan-based multiplex real-time PCR for simultaneous detection of three porcine diarrhea viruses [J]. Frontiers in Microbiology, 2024, 15: 1380849.
    [12] NIU J W, LI J H, GUAN J L, et al. Development of a multiplex RT-PCR method for the detection of four porcine enteric coronaviruses [J]. Frontiers in Veterinary Science, 2022, 9: 1033864. doi: 10.3389/fvets.2022.1033864
    [13] LIANG W, ZHOU D N, GENG C, et al. Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia [J]. PeerJ, 2020, 8: e10114. doi: 10.7717/peerj.10114
    [14] ZHANG H L, HAN F F, YAN X G, et al. Prevalence and phylogenetic analysis of spike gene of porcine epidemic diarrhea virus in Henan province, China in 2015-2019 [J]. Infection, Genetics and Evolution, 2021, 88: 104709. doi: 10.1016/j.meegid.2021.104709
    [15] LI Z W, MA Z Q, LI Y, et al. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines [J]. Microbial Pathogenesis, 2020, 149: 104553. doi: 10.1016/j.micpath.2020.104553
    [16] 俞正玉, 逄凤娇, 孙冰, 等. 猪流行性腹泻病毒变异株RT-PCR检测方法的建立 [J]. 江苏农业科学, 2018, 46(1):116−118.

    YU Z Y, PANG F J, SUN B, et al. Establishment of RT-PCR method for detection of porcine epidemic diarrhea virus mutant [J]. Jiangsu Agricultural Sciences, 2018, 46(1): 116−118. (in Chinese)
    [17] SONG W B, FENG Y X, ZHANG J L, et al. Development of a multiplex reverse transcription-quantitative PCR (qPCR) method for detecting common causative agents of swine viral diarrhea in China [J]. Porcine Health Management, 2024, 10(1): 12. doi: 10.1186/s40813-024-00364-y
    [18] LI C H, LIANG J L, YANG D, et al. Visual and rapid detection of porcine epidemic diarrhea virus (PEDV) using reverse transcription loop-mediated isothermal amplification method [J]. Animals, 2022, 12(19): 2712. doi: 10.3390/ani12192712
    [19] WANG Y S, NIE M C, DENG H D, et al. Establishment of a reverse transcription recombinase-aided amplification detection method for porcine group a rotavirus [J]. Frontiers in Veterinary Science, 2022, 9: 954657. doi: 10.3389/fvets.2022.954657
    [20] XIA W L, CHEN Y, DING X, et al. Rapid and visual detection of type 2 porcine reproductive and respiratory syndrome virus by real-time fluorescence-based reverse transcription recombinase-aided amplification [J]. Viruses, 2022, 14(11): 2526. doi: 10.3390/v14112526
    [21] WANG S C, ZHUANG Q Y, JIANG N, et al. Reverse transcription recombinase-aided amplification assay for avian influenza virus [J]. Virus Genes, 2023, 59(3): 410−416.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-08-15
  • 网络出版日期:  2024-11-12

目录

    /

    返回文章
    返回