Citation: | JIA X B, LIU F C, ZHAO K, et al. Biological Functions of Transcription Factor OmpR in Serratia marcescens FZSF02 [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1491−1498 doi: 10.19303/j.issn.1008-0384.2021.12.014 |
[1] |
MA H Y, YANG B, WANG H W, et al. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil [J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 245−253. doi: 10.1002/jsfa.7087
|
[2] |
MAHLEN S D. Serratia infections: from military experiments to current practice [J]. Clinical Microbiology Reviews, 2011, 24(4): 755−91. doi: 10.1128/CMR.00017-11
|
[3] |
WILLIAMSON N R, FINERAN P C, LEEPER F J, et al. The biosynthesis and regulation of bacterial prodiginines [J]. Nature Reviews Microbiology, 2006, 4(12): 887−99. doi: 10.1038/nrmicro1531
|
[4] |
GERC A J, SONG L, CHALLIS G L, et al. The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin [J]. Plos One, 2012, 7(9): e44673. doi: 10.1371/journal.pone.0044673
|
[5] |
ARAUJO H W C, ANDRADE R F S, MONTERO R D, et al. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications [J]. Microbial Cell Factories, 2019, 18(1).
|
[6] |
YAN Q, FONG S S. Design and modularized optimization of one-step production of N-acetylneuraminic acid from chitin in Serratia marcescens [J]. Biotechnology & Bioengineering, 2018, 115(9): 2255−2267.
|
[7] |
BAI F M, DAI L, FAN J Y, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2, 3-butanediol production [J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(5): 779−786.
|
[8] |
LV X, DAI L, BAI F M, et al. Metabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin [J]. Bioresources & Bioprocessing, 2016, 3(1): 52.
|
[9] |
SUN Y, WANG L J, PAN X W, et al. Improved prodigiosin production by relieving CpxR temperature-sensitive inhibition [J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 344.
|
[10] |
尤忠毓, 王玉洁, 孙诗清, 等. 微生物发酵法生产灵菌红素研究进展 [J]. 生物工程学报, 2016, 32(10):1332−1347.
YOU Z Y, WANG Y J, SUN S Q, et al. Progress in microbial production of prodigiosin [J]. Sheng Wu Gong Cheng Xue Bao, 2016, 32(10): 1332−1347.(in Chinese)
|
[11] |
PRUB B M. Involvement of two-component signaling on bacterial motility and biofilm development [J]. Journal of Bacteriology, 2011, 199(18): 00259−17.
|
[12] |
王栋, 王少辉, 张焕容, 等. 双组分系统rcsC基因影响禽致病性大肠杆菌的致病性及相关生物学特性 [J]. 微生物学报, 2019, 59(3):468−477.
WANG D, WANG S H, ZHANG H R, et al. Two-component system rcsC gene affects pathogenicity and associated biological characteristics of avian pathogenic Escherichia coli [J]. Acta Microbiologica Sinica, 2019, 59(3): 468−477.(in Chinese)
|
[13] |
PETER C. FINERAN, HHLLY S, et al. Biosynthesis of tripyrrole and β‐lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production [J]. Molecular microbiology, 2005, 56(6): 1495−1517. doi: 10.1111/j.1365-2958.2005.04660.x
|
[14] |
TZMZIN G, PETER C F, LEE E, et al. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate [J]. BMC microbiology, 2009, 9(1): 112. doi: 10.1186/1471-2180-9-112
|
[15] |
NICHOLAS A S, RONI M L, KIMBERLY M B, et al. Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites [J]. Journal of Bacteriology, 2015, 197(15): 2468−2478. doi: 10.1128/JB.00136-15
|
[16] |
HOMG Y T, CHANG K C, LIU Y N, et al. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens [J]. International Journal of Medical Microbiology, 2010, 300(5): 304−312. doi: 10.1016/j.ijmm.2010.01.003
|
[17] |
LIN C Q, JIA X B, FANG Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets [J]. Electronic Journal of Biotechnology, 2019, 40: 58−64. doi: 10.1016/j.ejbt.2019.04.007
|
[18] |
LIU Y G, CHEN Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biotechniques, 2007, 43(5): 649−654. doi: 10.2144/000112601
|
[19] |
JIA X B, LIN X J, CHEN J C. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites [J]. AMB Express, 2017, 7(1): 195. doi: 10.1186/s13568-017-0495-x
|
[20] |
BRZOSTEK K, RACZKOWSKA A, ZASADA A. The osmotic regulator OmpR is involved in the response of Yersinia enterocolitica O: 9 to environmental stresses and survival within macrophages [J]. FEMS Microbiology Letters, 2010, 2: 265−271.
|
[21] |
GAN H, ZHANG Y Q, HAN Y P, et al. Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis [J]. BMC Microbiology, 2011, 11(1): 39. doi: 10.1186/1471-2180-11-39
|
[22] |
PAN X W, TANG M, YOU J J, et al. Regulator RcsB controls prodigiosin synthesis and various cellular processes in Serratia marcescens JNB5-1 [J]. Applied and Environmental Microbiology, 2021, 87(2): e02052−20.
|
[23] |
NABIL M W, GEORGE P C S. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006 [J]. Microbiology, 2012, 158(3): 648−658. doi: 10.1099/mic.0.055780-0
|
[24] |
VIDAL O, LONGIN R, PRIGENT C C, et al. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression [J]. Journal of Bacteriology, 1998, 180(9): 2442−2449. doi: 10.1128/JB.180.9.2442-2449.1998
|
[25] |
PRUSS B, BESEMANN C, DENTON A, et al. A complex transcription network controls the early stages of biofilm development by Escherichia coli [J]. Journal of Bacteriology, 2006, 188: 3731−3739. doi: 10.1128/JB.01780-05
|
[26] |
MENG J, BAI J Q, XU J H, et al. Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica [J]. FEMS Microbiology Letters, 2019, 366(17): 1−9.
|
[27] |
董洪燕, 彭大新, 焦新安, 等. 肠炎沙门氏菌鸡源株ompR基因缺失株的构建及生物学特性与亲本株的比较 [J]. 微生物学报, 2011, 51(9):1256−1262.
DONG H Y, PENG D X, JIAO X A, et al. Construction and characterization of an ompR gene deletion mutant fromSalmonella enteritidis [J]. Acta Microbiologica Sinica, 2011, 51(9): 1256−1262.(in Chinese)
|
[28] |
TIPTON K A, RATHER P N. An ompR-envZ Two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075 [J]. Journal of Bacteriology, 2016, 199(3): 705−716.
|
[29] |
PARK D, FORST S. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila [J]. Molecular Microbiology, 2010, 61(6): 1397−1412.
|