Citation: | CHEN Y T, TIAN S J, LU C X, et al. Research Progress on Intracellular Proteins Interacting with PCV2 Rep [J]. Fujian Journal of Agricultural Sciences,2023,38(8):1004−1010 doi: 10.19303/j.issn.1008-0384.2023.08.015 |
[1] |
MENG X J. Porcine circovirus type 2 (PCV2): Pathogenesis and interaction with the immune system [J]. Annual Review of Animal Biosciences, 2013, 1: 43−64. doi: 10.1146/annurev-animal-031412-103720
|
[2] |
LV Q Z, GUO K K, ZHANG Y M. Current understanding of genomic DNA of porcine circovirus type 2 [J]. Virus Genes, 2014, 49(1): 1−10. doi: 10.1007/s11262-014-1099-z
|
[3] |
张维. 一例猪圆环病毒2型和猪葡萄球菌混合感染导致仔猪渗出性皮炎的诊断与防控[J]. 养猪, 2021(3): 108-110.
ZHANG W. Diagnosis, prevention and control of exudative dermatitis in piglets caused by mixed infection of porcine circovirus type 2 and Staphylococcus suis[J]. Swine Production, 2021(3): 108-110. (in Chinese)
|
[4] |
汤智慧, 杨柯, 王翠华. PCV2免疫调节及遗传变异研究进展[J]. 陕西农业科学, 2020, 66(1): 91-93, 104.
TANG Z H, YANG K, WANG C H. Advance of PCV2 immunoregulation and genetic variation[J]. Shaanxi Journal of Agricultural Sciences, 2020, 66(1): 91-93, 104. (in Chinese)
|
[5] |
GRIERSON S S, WERLING D, BIDEWELL C, et al. Characterisation of porcine circovirus type 2 in porcine circovirus disease cases in England and Wales[J]. The Veterinary Record, 2018, 182(1): 22.
|
[6] |
梁佳琦, 李冉. Cap和Rep蛋白在猪圆环病毒2型复制中的作用 [J]. 中国预防兽医学报, 2015, 37(7):564−566.
LIANG J Q, LI R. Role of Cap and Rep proteins in porcine circovirus type 2 replication [J]. Chinese Journal of Preventive Veterinary Medicine, 2015, 37(7): 564−566.(in Chinese)
|
[7] |
刘丹, 王一平, 危艳武, 等. 猪圆环病毒2型Rep和Rep’蛋白免疫原性及其抗体中和活性的测定 [J]. 中国兽医科学, 2012, 42(12):1216−1223. doi: 10.16656/j.issn.1673-4696.2012.12.001
LIU D, WANG Y P, WEI Y W, et al. Determination of immunogenicity and neutralizing activity of the Rep and Rep’ proteins derived from porcine circovirus type 2 [J]. Chinese Veterinary Science, 2012, 42(12): 1216−1223.(in Chinese) doi: 10.16656/j.issn.1673-4696.2012.12.001
|
[8] |
WU X C, WANG X Y, SHI T F, et al. Porcine circovirus type 2 Rep enhances IL-10 production in macrophages via activation of p38-MAPK pathway [J]. Viruses, 2019, 11(12): 1141. doi: 10.3390/v11121141
|
[9] |
赵燕, 喻正军. 猪圆环病毒2型基因组DNA的结构与功能研究进展[J]. 中国畜牧兽医, 2016, 43(5): 1176-1181.
ZHAO Y, YU Z J. Advances on structure and function of genomic DNA of porcine circovirus type 2[J]. China Animal Husbandry & Veterinary Medicine, 2016, 43(5): 1176-1181. (in Chinese)
|
[10] |
苏芮, 王东亮, 陈指龙, 等. PCV2 ORF1~ORF4基因所编码蛋白功能的研究进展[J]. 经济动物学报, 2020, 24(1): 46-51.
SU R, WANG D L, CHEN Z L, et al. Research progress on major function proteins encoded by PCV2 ORF1-ORF4 gene[J]. Journal of Economic Animal, 2020, 24(1): 46-51. (in Chinese)
|
[11] |
欧阳婷. 几种宿主因子在PCV2感染过程中的作用研究[D]. 长春: 吉林大学, 2020.
OUYANG T. The role of several host factors in porcine circovirus type 2 infection[D]. Changchun: Jilin University, 2020. (in Chinese)
|
[12] |
TIMMUSK S, FOSSUM C, BERG M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein[J]. The Journal of General Virology, 2006, 87(Pt 11): 3215-3223.
|
[13] |
FINSTERBUSCH T, STEINFELDT T, DOBERSTEIN K, et al. Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins [J]. Virology, 2009, 386(1): 122−131. doi: 10.1016/j.virol.2008.12.039
|
[14] |
吕其壮. 猪圆环病毒2型ORF5蛋白功能分析和ORF4蛋白拮抗细胞凋亡机制研究[D]. 杨凌: 西北农林科技大学, 2016.
LÜ Q Z. Functional analysis of putative ORF5 protein of porcine circovirus type 2 and antiapoptotic mechanism of viral ORF4 protein[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
|
[15] |
陈艳, 颜秋, 刘畅, 等. PCV2 Cap蛋白的胞内互作蛋白研究进展[J]. 家畜生态学报, 2018, 39(7): 80-85.
CHEN Y, YAN Q, LIU C, et al. Research progress on cellular interacting-proteins of capsid protein of PCV2[J]. Journal of Domestic Animal Ecology, 2018, 39(7): 80-85. (in Chinese)
|
[16] |
曹晶晶. 猪圆环病毒2的胞内运输机制研究[D]. 杭州: 浙江大学, 2014.
CAO J J. Studies on the transportation mechanism of porcine circovirus type 2 in host cells[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
|
[17] |
DU Q, HUANG Y, WANG T T, et al. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR[J]. Oncotarget, 2016, 7(14): 17492-17507.
|
[18] |
WANG Z Y, CHEN J, ZHANG Q G, et al. Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR[J]. Veterinary Microbiology, 2022, 266: 109354.
|
[19] |
羊露露, 李安琪, 袁生, 等. 广东省4株PCV2型分离株全基因组进化分析 [J]. 中国畜牧兽医, 2022, 49(3):1015−1023.
YANG L L, LI A Q, YUAN S, et al. Complete genome evolution analysis of four porcine circovirus type 2 isolates from Guangdong Province [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(3): 1015−1023.(in Chinese)
|
[20] |
CHEN Q Q, RONG J, LI G P, et al. Establishment of a Rep' protein antibody detection method to distinguish natural infection with PCV2 from subunit vaccine immunization [J]. Journal of Medical Microbiology, 2020, 69(9): 1183−1196. doi: 10.1099/jmm.0.001230
|
[21] |
MANKERTZ A, MUELLER B, STEINFELDT T, et al. New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2[J]. Journal of Virology, 2003, 77(18): 9885−9893.
|
[22] |
CHEUNG A K. Specific functions of the Rep and Rep׳ proteins of porcine circovirus during copy-release and rolling-circle DNA replication[J]. Virology, 2015, 481: 43-50.
|
[23] |
范春娇, 黄鹏, 黄贵华, 等. 吴茱萸碱抗消化系统肿瘤作用机制的研究进展[J]. 海南医学院学报, 2021, 27(10): 791-796.
FAN C J, HUANG P, HUANG G H, et al. Research progress on the mechanism of evodiamine against gastrointestinal tumor[J]. Journal of Hainan Medical University, 2021, 27(10): 791-796. (in Chinese)
|
[24] |
刘晶晶, 牟艳玲. 苦参碱抗肿瘤作用机制的研究进展[J]. 中国药房, 2017, 28(19): 2707-2711.
LIU J J, MOU Y L. Research progress on anti-tumor mechanism of matrine[J]. China Pharmacy, 2017, 28(19): 2707-2711. (in Chinese)
|
[25] |
林兴华, 秦性璋, 赵玉婉, 等. c-Myc与肿瘤放射敏感性关系的研究进展[J]. 医学研究生学报, 2021, 34(9): 996-1002.
LIN X H, QIN X Z, ZHAO Y W, et al. Advances in the relationship between c-myc and tumor radiosensitivity[J]. Journal of Medical Postgraduates, 2021, 34(9): 996-1002. (in Chinese)
|
[26] |
袁军, 江晓红. 抗苗勒管激素和锌指蛋白-265在卵巢颗粒细胞瘤及Sertoli细胞瘤中的表达[J]. 浙江实用医学, 2016, 21(3): 164-166.
YUAN J, JIANG X H. Expression of anti-Mullerian hormone and zinc finger protein-265 in ovarian granulosa cell tumor and Sertoli cell tumor[J]. Zhejiang Practical Medicine, 2016, 21(3): 164-166. (in Chinese)
|
[27] |
尤新国, 樊姝彤, 满怡, 等. 精子发生相关的锌指蛋白的研究[J]. 中国男科学杂志, 2016, 30(10): 60-62.
YOU X G, FAN S T, MAN Y, et al. Study on zinc finger protein related to spermatogenesis[J]. Chinese Journal of Andrology, 2016, 30(10): 60-62. (in Chinese)
|
[28] |
李静. 前体mRNA剪接蛋白ZNF265的表达、调控及功能研究[D]. 上海: 复旦大学, 2006.
LI J. Expression and regulation of pre-mRNA splicing factor ZNF265 and its function[D]. Shanghai: Fudan University, 2006. (in Chinese)
|
[29] |
TIAN X L, KADABA R, YOU S A, et al. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome [J]. Nature, 2004, 427(6975): 640−645. doi: 10.1038/nature02320
|
[30] |
AKKAWI M, ABBASI I, HOCHBERG A, et al. The human VG5Q gene transcript is over expressed in colorectal and bladder carcinomas[J]. Gene Therapy & Molecular Biology, 2006, 10: 173-178. (该条文献请作者核实是否正确)
|
[31] |
BODEMPUDI V D, DUDEK O A, TERAI K, et al. VG5Q inhibition suppresses proliferation of endothelial and cancer cell lines [J]. Blood, 2008, 112(11): 5464. doi: 10.1182/blood.V112.11.5464.5464
|
[32] |
付天然, 张良. SUMO化修饰对人源胸腺嘧啶DNA糖基化酶的结构影响及活性调控[J]. 上海交通大学学报(医学版), 2018, 38(1): 24-29.
FU T R, ZHANG L. Effect of sumoylation on the structure and activity of human thymine DNA glycosylase[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2018, 38(1): 24-29. (in Chinese)
|
[33] |
SJOLUND A B, SENEJANI A G, SWEASY J B. MBD4 and TDG: Multifaceted DNA glycosylases with ever expanding biological roles[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743/744: 12-25.
|
[34] |
HE Y F, LI B Z, LI Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA [J]. Science, 2011, 333(6047): 1303−1307. doi: 10.1126/science.1210944
|
[35] |
DALTON S R, BELLACOSA A. DNA demethylation by TDG [J]. Epigenomics, 2012, 4(4): 459−467. doi: 10.2217/epi.12.36
|
[36] |
TANG Q H, LI S B, ZHANG H, et al. Correlation of the cyclin A expression level with porcine circovirus type 2 propagation efficiency [J]. Archives of Virology, 2013, 158(12): 2553−2560. doi: 10.1007/s00705-013-1785-5
|
[37] |
CHENG S, YAN W D, GU W, et al. The ubiquitin-proteasome system is required for the early stages of porcine circovirus type 2 replication [J]. Virology, 2014, 456/457: 198−204. doi: 10.1016/j.virol.2014.03.028
|
[38] |
LIU J, ZHANG X L, MA C, et al. Heat shock protein 90 is essential for replication of porcine circovirus type 2 in PK-15 cells[J]. Virus Research, 2016, 224: 29−37.
|
[39] |
LIU J, BAI J, ZHANG L L, et al. Hsp70 positively regulates porcine circovirus type 2 replication in vitro[J]. Virology, 2013, 447(1/2): 52−62.
|
[40] |
GILPIN D F, MCCULLOUGH K, MEEHAN B M, et al. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system[J]. Veterinary Immunology and Immunopathology, 2003, 94(3/4): 149−161.
|
[41] |
LIU J, ZHANG L L, ZHU X J, et al. Heat shock protein 27 is involved in PCV2 infection in PK-15 cells[J]. Virus Research, 2014, 189: 235−242.
|
[42] |
VANDERWAAL K, DEEN J. Global trends in infectious diseases of swine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(45): 11495−11500.
|
[43] |
段滇宁, 沈华伟, 潘艳敏, 等. 猪圆环病毒2型通过外泌体miR-125a-5p靶向Bcl-2诱导淋巴细胞凋亡[J]. 生物工程学报, 2022, 38(8): 2891-2901.
DUAN D N, SHEN H W, PAN Y M, et al. Porcine circovirus type 2 induces apoptosis by exosomal miR-125a-5p targeting Bcl-2 in porcine lymphocytes[J]. Chinese Journal of Biotechnology, 2022, 38(8): 2891-2901. (in Chinese)
|