• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
SUN R, LIU T, PAN K Y, et al. Cloning and Expression of BsDFR in Bougainvillea spectabilis [J]. Fujian Journal of Agricultural Sciences,2024,39(1):33−39 doi: 10.19303/j.issn.1008-0384.2024.01.005
Citation: SUN R, LIU T, PAN K Y, et al. Cloning and Expression of BsDFR in Bougainvillea spectabilis [J]. Fujian Journal of Agricultural Sciences,2024,39(1):33−39 doi: 10.19303/j.issn.1008-0384.2024.01.005

Cloning and Expression of BsDFR in Bougainvillea spectabilis

doi: 10.19303/j.issn.1008-0384.2024.01.005
  • Received Date: 2023-09-26
  • Rev Recd Date: 2023-11-10
  • Available Online: 2023-12-21
  • Publish Date: 2024-01-28
  •   Objective   The dihydroflavonol-4-reductase (DFR) gene in bracts of Bougainvillea spectabilis was cloned and characterized to study the role it plays in color formation.   Method  BsDFRwas cloned based on the transcriptome data on the ornamental plant to study the related bioinformatics. Molecular docking technology was employed to predict the substrate specificity, and qRT-PCR applied to examine the relative transcription levels of the genes in B. spectabilis of different colors.   Result   The full-length coding sequence of BsDFR (GenBank ID: ON417750) was 987 bp encoding 328 amino acids. The protein had a calculated molecular weight of 36.49 kDa and an isoelectric point of 6.33. It had the NADPH and substrate specific binding sites unique to DFR of Asn type without a transmembrane structure or signal peptide. The subcellular localization of the protein indicated it to be cytoplasmic. Alpha helices were the most abundant secondary structure of the protein, while the tertiary structure was a dimer. A substrate docking simulation, consistent with the structural analysis, predicted BsDFR to possess a catalytic activity on dihydrokaempferol, dihydroquercetin, and dihydromyricetin. The phylogenetic tree analysis grouped it along with caryophyllales plants. High expression of the gene was found in the orange B. spectabilis by qRT-PCR. It was speculated that the main substrate to be DHK, which was catalyzed by BsDFR into leucopelargonidin, a precursor of orange-colored anthocyanidin——pelargonidin.   Conclusion   BsDFR in B. spectabilis had typical molecular characteristics of the plant dihydroflavonol-4-reductase, which is associated with the pigment synthesis in the bracts of orange B. spectabilis.
  • loading
  • [1]
    徐夙侠, 王亮生, 舒庆艳, 等. 三角梅属植物的生物学研究进展 [J]. 植物学通报, 2008, 43(4):483−490.

    XU S X, WANG L S, SHU Q Y, et al. Progress of study of the biology of the resource plant Bougainvillea [J]. Chinese Bulletin of Botany, 2008, 43(4): 483−490.(in Chinese)
    [2]
    常圣鑫, 杨光穗, 陈金花, 等. 世界三角梅产业发展历史及趋势 [J]. 热带农业科学, 2018, 38(1):71−77.

    CHANG S X, YANG G S, CHEN J H, et al. Development history and tendency of Bougainvillea industry all over the world [J]. Chinese Journal of Tropical Agriculture, 2018, 38(1): 71−77.(in Chinese)
    [3]
    GROTEWOLD E. The genetics and biochemistry of floral pigments [J]. Annual Review of Plant Biology, 2006, 57: 761−780. doi: 10.1146/annurev.arplant.57.032905.105248
    [4]
    HELLER W, FORKMANN G, BRITSCH L, et al. Enzymatic reduction of (+)-dihydroflavonols to flavan-3, 4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis [J]. Planta, 1985, 165(2): 284−287. doi: 10.1007/BF00395052
    [5]
    MARTENS S, TEERI T, FORKMANN G. Heterologous expression of dihydroflavonol 4-reductases from various plants [J]. FEBS Letters, 2002, 531(3): 453−458. doi: 10.1016/S0014-5793(02)03583-4
    [6]
    TANAKA Y, BRUGLIERA F, CHANDLER S. Recent progress of flower colour modification by biotechnology [J]. International Journal of Molecular Sciences, 2009, 10(12): 5350−5369. doi: 10.3390/ijms10125350
    [7]
    GUTTERSON N. Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression [J]. HortScience, 1995, 30(5): 964−966. doi: 10.21273/HORTSCI.30.5.964
    [8]
    AIDA R, YOSHIDA K, KONDO T, et al. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene [J]. Plant Science, 2000, 160(1): 49−56. doi: 10.1016/S0168-9452(00)00364-2
    [9]
    孙蓉, 刘姗, 高静雷, 等. 三角梅CHS基因的克隆及表达分析 [J]. 西北农业学报, 2021, 30(10):1565−1572. doi: 10.7606/j.issn.1004-1389.2021.10.014

    SUN R, LIU S, GAO J L, et al. Cloning and expression analysis of CHS gene from Bougainvillea spectabilis [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(10): 1565−1572.(in Chinese) doi: 10.7606/j.issn.1004-1389.2021.10.014
    [10]
    孙蓉, 刘姗, 高静雷. 三角梅黄烷酮3-羟化酶基因的克隆及表达分析 [J]. 生物技术通报, 2022, 38(11):122−128. doi: 10.13560/j.cnki.biotech.bull.1985.2022-0048

    SUN R, LIU S, GAO J L. Cloning and expression analysis of flavanone 3-hydroxylase gene from Bougainvillea spectabilis [J]. Biotechnology Bulletin, 2022, 38(11): 122−128.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2022-0048
    [11]
    于婷婷, 倪秀珍, 高立宏, 等. 高等植物二氢黄酮醇4-还原酶基因研究进展 [J]. 植物研究, 2018, 38(4):632−640. doi: 10.7525/j.issn.1673-5102.2018.04.020

    YU T T, NI X Z, GAO L H, et al. Advances in study of dihydroflavonol 4-reductase(DFR) genes of higher plants [J]. Bulletin of Botanical Research, 2018, 38(4): 632−640.(in Chinese) doi: 10.7525/j.issn.1673-5102.2018.04.020
    [12]
    STAFFORD H A. Anthocyanins and betalains: Evolution of the mutually exclusive pathways [J]. Plant Science, 1994, 101(2): 91−98. doi: 10.1016/0168-9452(94)90244-5
    [13]
    胡可, 孟丽, 韩科厅, 等. 瓜叶菊花青素合成关键结构基因的分离及表达分析 [J]. 园艺学报, 2009, 36(7):1013−1022. doi: 10.3321/j.issn:0513-353X.2009.07.011

    HU K, MENG L, HAN K T, et al. Isolation and expression analysis of key genes involved in anthocyanin biosynthesis of Cineraria [J]. Acta Horticulturae Sinica, 2009, 36(7): 1013−1022.(in Chinese) doi: 10.3321/j.issn:0513-353X.2009.07.011
    [14]
    NIELSEN K, DEROLES S C, MARKHAM K R, et al. Antisense flavonol synthase alters copigmentation and flower color in lisianthus [J]. Molecular Breeding, 2002, 9(4): 217−229. doi: 10.1023/A:1020320809654
    [15]
    DAVIES K M, SCHWINN K E, DEROLES S C, et al. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase [J]. Euphytica, 2003, 131(3): 259−268. doi: 10.1023/A:1024018729349
    [16]
    JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins [J]. The Plant Journal:for Cell and Molecular Biology, 1999, 19(1): 81−85. doi: 10.1046/j.1365-313X.1999.00502.x
    [17]
    钟晓缘, 刘姗, 孙蓉, 等. 三角梅苞叶色彩参数和色素含量分析及蓝色转基因受体的筛选 [J]. 西北植物学报, 2022, 42(4):646−655. doi: 10.7606/j.issn.1000-4025.2022.04.0646

    ZHONG X Y, LIU S, SUN R, et al. Screening of blue transgenic receptor varieties in Bougainvillea spectabilis based on the analysis of color parameters and pigment content [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(4): 646−655.(in Chinese) doi: 10.7606/j.issn.1000-4025.2022.04.0646
    [18]
    JOHNSON E T, RYU S, YI H, et al. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase [J]. The Plant Journal:for Cell and Molecular Biology, 2001, 25(3): 325−333. doi: 10.1046/j.1365-313x.2001.00962.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (616) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return