• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
LI W X, ZHANG T Y, LI Y, et al. Effect of Rhizobacteria Containing ACC Deaminase on Growth of Rose Bush [J]. Fujian Journal of Agricultural Sciences,2023,38(4):423−430. DOI: 10.19303/j.issn.1008-0384.2023.04.005
Citation: LI W X, ZHANG T Y, LI Y, et al. Effect of Rhizobacteria Containing ACC Deaminase on Growth of Rose Bush [J]. Fujian Journal of Agricultural Sciences,2023,38(4):423−430. DOI: 10.19303/j.issn.1008-0384.2023.04.005

Effect of Rhizobacteria Containing ACC Deaminase on Growth of Rose Bush

More Information
  • Received Date: January 11, 2022
  • Revised Date: March 28, 2023
  • Available Online: May 08, 2023
  •   Objective   Effect of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase on the productivity of rose bushes was studied.
      Method  A pot experiment was conducted on White Lichee , a variety of roses commonly used commercially for cut flowers.Rhizobacteria carrying the plant growth promoter, ACC deaminase, were added to the soil, and effects on the agronomic traits, such as plant height, stem girth, and number of branches, as well as the physiological indexes, such as chlorophyll a/b, leaf protective enzyme, MDA content, flower ethylene release, photosynthesis, and chlorophyll fluorescence, of the plants monitored.
      Result  In comparison with control, the incorporation of F23 or F195 PGPR, respectively, resulted in the rose bushes 25.9% and 26.0% taller with higher contents of chlorophyll a and chlorophyll b; F23, 17.1% larger stem girth, significantly greater activities of urease (by 42.6%), phosphatase (by 16.3%), and sucrase (by 48.8%) in rhizosphere soil, and POD (1.78x of control) and CAT (2.07x of control) in leaf. The floral ethylene release of the bushes treated with F23 was 37.0% lower than control, while the net photosynthetic rate of the F195-treated bushes significantly rose to 1.40 times and that of F23-treated bushes 1.16 times of control.
      Conclusion   Overall, F23 appeared to most significantly promote the growth of White Lichee rose bushes among different PGPR tested.
  • [1]
    徐雪东, 张超, 秦成, 等. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响 [J]. 应用生态学报, 2019, 30(10):3501−3508.

    XU X D, ZHANG C, QIN C, et al. Effects of PGPR inoculation on photosynthesis and physiological-ecological characteristics of apple seedlings under drought stress [J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3501−3508.(in Chinese)
    [2]
    戚秀秀, 魏畅, 刘晓丹, 等. 根际促生菌应用于基质对水稻幼苗生长的影响 [J]. 土壤, 2020, 52(5):1025−1032.

    QI X X, WEI C, LIU X D, et al. Effects of plant growth-promoting rhizobacteria added in seedling substrate on rice growth [J]. Soils, 2020, 52(5): 1025−1032.(in Chinese)
    [3]
    GLICK B R. Bacteria with ACC deaminase can promote plant growth and help to feed the world [J]. Microbiological Research, 2014, 169(1): 30−39. DOI: 10.1016/j.micres.2013.09.009
    [4]
    赵龙飞, 徐亚军, 常佳丽, 等. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用 [J]. 微生物学报, 2016, 56(6):1009−1021.

    ZHAO L F, XU Y J, CHANG J L, et al. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules [J]. Acta Microbiologica Sinica, 2016, 56(6): 1009−1021.(in Chinese)
    [5]
    王伟楠, 兰智勇, 喻文丽, 等. 盐穗木根际产ACC脱氨酶耐盐菌株的筛选及鉴定 [J]. 中国土壤与肥料, 2021(2):270−275. DOI: 10.11838/sfsc.1673-6257.20057

    WANG W N, LAN Z Y, YU W L, et al. Screening and identification of salt-tolerant and ACC deaminase-producing strains in Halostachys caspica rhizosphere [J]. Soil and Fertilizer Sciences in China, 2021(2): 270−275.(in Chinese) DOI: 10.11838/sfsc.1673-6257.20057
    [6]
    KUMAR A, MALEVA M, BRUNO L B, et al. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L [J]. Chemosphere, 2021, 276: 130038. DOI: 10.1016/j.chemosphere.2021.130038
    [7]
    SHAHZAD S M, ARIF M S, RIAZ M, et al. PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L. ) under fertilized conditions [J]. European Journal of Soil Biology, 2013, 57: 27−34. DOI: 10.1016/j.ejsobi.2013.04.002
    [8]
    费诗萱, 张敏, 王迎, 等. 具有ACC脱氨酶活性的红枣根际促生菌株的分离筛选及其促生效果研究 [J]. 西北林学院学报, 2019, 34(6):140−146. DOI: 10.3969/j.issn.1001-7461.2019.06.22

    FEI S X, ZHANG M, WANG Y, et al. Isolation, screening and promoting effects of plant growth-promoting rhizobacteria (PGPR) containing ACC deaminase from jujube [J]. Journal of Northwest Forestry University, 2019, 34(6): 140−146.(in Chinese) DOI: 10.3969/j.issn.1001-7461.2019.06.22
    [9]
    谭程仁. 切花月季环保生产现状与发展对策研究[D]. 昆明: 云南大学, 2017.

    TAN C R. Research on the current situation and countermeasures of environmentally friendly production of rose hybrida[D]. Kunming: Yunnan University, 2017. (in Chinese)
    [10]
    赵凤亮, 邹刚华, 单颖, 等. 香蕉园化肥施用现状、面源污染风险及其养分综合管理措施 [J]. 热带作物学报, 2020, 41(11):2346−2352. DOI: 10.3969/j.issn.1000-2561.2020.11.028

    ZHAO F L, ZOU G H, SHAN Y, et al. Current status of chemical fertilizer application in banana plantation, environmental risks and integrated nutrient management practices [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2346−2352.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2020.11.028
    [11]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [12]
    关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [13]
    舒健虹, 刘晓霞, 王子苑, 等. 不同氮磷条件下施加促生菌对多花黑麦草生长的影响 [J]. 中国草地学报, 2021, 43(2):28−36.

    SHU J H, LIU X X, WANG Z Y, et al. Effects of growth-promoting bacteria on the growth of Lolium multiflorum under different nitrogen and phosphorus conditions [J]. Chinese Journal of Grassland, 2021, 43(2): 28−36.(in Chinese)
    [14]
    OLANREWAJU O S, GLICK B R, BABALOLA O O. Mechanisms of action of plant growth promoting bacteria [J]. World Journal of Microbiology and Biotechnology, 2017, 33(11): 197. DOI: 10.1007/s11274-017-2364-9
    [15]
    孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展 [J]. 草地学报, 2020, 28(5):1203−1215.

    SUN Y Y, CHEN J, WANG Y, et al. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance [J]. Acta Agrestia Sinica, 2020, 28(5): 1203−1215.(in Chinese)
    [16]
    贺字典, 闫立英, 石延霞, 等. 产生ACC脱氨酶的PGPR种衣剂对黄瓜细菌性茎软腐病的防治效果 [J]. 中国生物防治学报, 2017, 33(6):817−825.

    HE Z D, YAN L Y, SHI Y X, et al. Bio-control of PGPR seed coating producing ACC deaminase to cucumber bacterial stem soft rot disease [J]. Chinese Journal of Biological Control, 2017, 33(6): 817−825.(in Chinese)
    [17]
    李美芳, 张平, 李倩, 等. 镉胁迫下两株产铁载体/解磷菌株对黑麦草种子萌发及幼苗积累镉的影响 [J]. 中南林业科技大学学报, 2021, 41(9):179−187.

    LI M F, ZHANG P, LI Q, et al. Effects of two siderophore producing/phosphorus solubilizing strains on seed germination and cadmium accumulation of Lolium perenne under cadmium stress [J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 179−187.(in Chinese)
    [18]
    OTEINO N, LALLY R D, KIWANUKA S, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates [J]. Frontiers in Microbiology, 2015, 6: 745.
    [19]
    孙海, 张淋淋, 金桥, 等. 基于非靶向代谢组学分析假单胞菌P1解磷作用 [J]. 西北农业学报, 2019, 28(9):1452−1459.

    SUN H, ZHANG L L, JIN Q, et al. Elucidating phosphorus dissolving action of Pseudomonas P1 by non-targeted metabolomics [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(9): 1452−1459.(in Chinese)
    [20]
    DEL CARMEN OROZCO-MOSQUEDA M, GLICK B R, SANTOYO G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops [J]. Microbiological Research, 2020, 235: 126439. DOI: 10.1016/j.micres.2020.126439
    [21]
    JIN K M, LI H B, LI X Q, et al. Rhizosphere bacteria containing ACC deaminase decrease root ethylene emission and improve maize root growth with localized nutrient supply [J]. Food and Energy Security, 2021, 10(2): 275−284. DOI: 10.1002/fes3.278
    [22]
    GUPTA A, RAI S, BANO A, et al. ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities [J]. Plants, 2022, 11(24): 3419. DOI: 10.3390/plants11243419
    [23]
    谢显秋, 张瑞楠, 韦江璐, 黄毓燕, 陈炯宇, 李杨瑞, 邢永秀. 4株甘蔗固氮菌株活化土壤养分及影响土壤酶活的分析[J/OL]. 分子植物育种: 1-27[2023-05-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210607.1338.008.html.

    XIE X Q, ZHANG R N, WEI J L, HUANG Y Y, CHEN J Y, LI Y R, XING Y X. Analysis of four nitrogen fixing sugarcane strains activating soil nutrients and affecting soil enzymes[J/OL]. Molecular Plant Breeding: 1-27[2023-05-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210607.1338.008.html.
    [24]
    王梦园, 杜延全, 朱建强. 复合促生菌对小麦苗期生长和土壤酶活的影响 [J]. 中国农业科技导报, 2019, 21(10):98−106.

    WANG M Y, DU Y Q, ZHU J Q. Influences compound probiotics on wheat growth in the seedling stage and soil enzyme activity [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 98−106.(in Chinese)
    [25]
    赵雨萌, 缪佩佩, 王旭东, 等. 解淀粉芽胞杆菌TR2对草莓土壤酶活性的影响与防病促生作用 [J]. 中国生物防治学报, 2022, 38(2):495−501.

    ZHAO Y M, MIAO P P, WANG X D, et al. Influences of Bacillus amyloliquefaciens TR2 on soil enzyme activities and its effects on disease control and growth promotion in strawberry [J]. Chinese Journal of Biological Control, 2022, 38(2): 495−501.(in Chinese)
    [26]
    曾文芳, 李亚姝, 崔晓宁, 等. 施氮对紫花苜蓿光合作用及抗蓟马的影响 [J]. 草原与草坪, 2021, 41(1):61−66,75. DOI: 10.13817/j.cnki.cyycp.2021.01.009

    ZENG W F, LI Y S, CUI X N, et al. Effect of nitrogen application on photosynthetic characteristics and resistance of alfalfa to thrips [J]. Grassland and Turf, 2021, 41(1): 61−66,75.(in Chinese) DOI: 10.13817/j.cnki.cyycp.2021.01.009
    [27]
    袁宗胜, 刘芳, 黄秋良, 等. 内生细菌对芳樟光合特性和几种酶活性的作用 [J]. 基因组学与应用生物学, 2019, 38(8):3559−3565.

    YUAN Z S, LIU F, HUANG Q L, et al. The effect of entophytic bacteria on the photosynthetic characteristics and several enzyme activities of Cinnamomum camphora [J]. Genomics and Applied Biology, 2019, 38(8): 3559−3565.(in Chinese)
    [28]
    WONG S C, COWAN I R, FARQUHAR G D. Stomatal conductance correlates with photosynthetic capacity [J]. Nature, 1979, 282(5737): 424−426. DOI: 10.1038/282424a0
    [29]
    钱申, 王志侠, 陈慧妹, 等. 不同微生境中水光温变化对毛尖紫萼藓叶绿素荧光特性的影响 [J]. 生态学报, 2021, 41(4):1482−1491.

    QIAN S, WANG Z X, CHEN H M, et al. Effects of water-light-temperature changes in different microhabitats on chlorophyll fluorescence characteristics of Grimmia pilifera [J]. Acta Ecologica Sinica, 2021, 41(4): 1482−1491.(in Chinese)
    [30]
    吕德国, 于翠, 秦嗣军, 等. 本溪山樱根部解磷细菌的定殖规律及其对植株生长发育的影响 [J]. 中国农业科学, 2008, 41(2):508−515. DOI: 10.3864/j.issn.0578-1752.2008.02.026

    LÜ D G, YU C, QIN S J, et al. Colonization regulation pattern of phosphobacteria and its effect on the growth and development of Cerasus sachalinensis [J]. Scientia Agricultura Sinica, 2008, 41(2): 508−515.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2008.02.026
    [31]
    秦嗣军, 张硕, 周文杰, 等. 根际促生细菌对东北山樱幼苗光合特性及生长的影响 [J]. 果树学报, 2014, 31(S1):98−102.

    QIN S J, ZHANG S, ZHOU W J, et al. Effect of plant growth promoting rhizobacteria on photosynthesis and growth of Cerasus sachalinensis seedlings [J]. Journal of Fruit Science, 2014, 31(S1): 98−102.(in Chinese)
    [32]
    PARÁDI I, BRATEK Z, LÁNG F. Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata [J]. Biologia Plantarum, 2003, 46(4): 563−569. DOI: 10.1023/A:1024819729317
    [33]
    汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响 [J]. 应用生态学报, 2019, 30(8):2767−2774. DOI: 10.13287/j.1001-9332.201908.037

    WANG D F, ZHENG X Y, XIAO Q T, et al. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L. ) seedling under cadmium stress [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2767−2774.(in Chinese) DOI: 10.13287/j.1001-9332.201908.037
    [34]
    FERREIRA C M H, SOARES H M V M, SOARES E V. Promising bacterial Genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects [J]. Science of the Total Environment, 2019, 682: 779−799. DOI: 10.1016/j.scitotenv.2019.04.225
    [35]
    林斌, 黄菊青, 官雪芳, 等. 解淀粉芽孢杆菌液体肥在茶叶上的应用研究 [J]. 福建农业学报, 2019, 34(10):1173−1178. DOI: 10.19303/j.issn.1008-0384.2019.10.009

    LIN B, HUANG J Q, GUAN X F, et al. Application of Bacillus amyloliquefaciens liquid fertilizer on tea bushes [J]. Fujian Journal of Agricultural Sciences, 2019, 34(10): 1173−1178.(in Chinese) DOI: 10.19303/j.issn.1008-0384.2019.10.009
  • Related Articles

    [1]YE Hongmeng, GAN Juan, LI Guoping, HU Jiapeng, SU Liman, WU Jinping, WANG Shengyan. Temporal and Spatial Distributions and Controlling Factors of Hydrochemistry at Wuyishan National Park Water Body[J]. Fujian Journal of Agricultural Sciences, 2022, 37(10): 1362-1370. DOI: 10.19303/j.issn.1008-0384.2022.010.016
    [2]LIN Guo-hua, ZHENG Shi. Spatial Distribution of Leisure Agriculture Demonstration Spots in Fujian Province and Its Influence Factors[J]. Fujian Journal of Agricultural Sciences, 2017, 32(6): 676-684. DOI: 10.19303/j.issn.1008-0384.2017.06.019
    [3]TAO Huan-zhuang, PENG Yang-jian, GAN Lei, MA Rui, CHENG Fang-li. Spatial Distribution of Water Repellency of Soils on Plots Planted with Different Crops in Karst Regions[J]. Fujian Journal of Agricultural Sciences, 2017, 32(1): 75-81. DOI: 10.19303/j.issn.1008-0384.2017.01.016
    [4]YAN Zheng, WANG Zheng-rong. Spatial Distribution and Sampling of Anophia leucomelas Larvaein Sweet Potato Fields[J]. Fujian Journal of Agricultural Sciences, 2016, 31(6): 626-629. DOI: 10.19303/j.issn.1008-0384.2016.06.014
    [5]JIAO Yun, SHU Qiao-yun, LIU Zhu-qin. Single Nucleotide Polymorphism (SNP) Analysis of the Endopolygalacturonase Gene in Chinese Bayberry (Myrica rubra)[J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 465-470. DOI: 10.19303/j.issn.1008-0384.2016.05.005
    [6]LI Jian-yu, SHI Meng-zhu, FU Jian-wei, LI Miao-zhi, CHEN Zhe-hong, CHEN Feng-long. Spatial Distribution of the Main Pests on the Alpine Brassica oleracea L.in Zhouning County[J]. Fujian Journal of Agricultural Sciences, 2015, 30(2): 176-179. DOI: 10.19303/j.issn.1008-0384.2015.02.014
    [7]YAN Zheng, WANG Zheng-rong. Spatial Distribution Pattern of Larva of Prodenia Litura (Fabricius) in Sweet Potato Fields[J]. Fujian Journal of Agricultural Sciences, 2011, 26(5): 812-817.
    [8]LIU Yun-hao, LAN Jiang-lin, LIU Bo, ZHU Chang-xiong, CHEN Yan-ping, . Extraction Methods for Bedding Microbial DNA from Fermentation Bed[J]. Fujian Journal of Agricultural Sciences, 2011, 26(2): 153-158.
    [9]HU Han-qing, PAN Shao-lin, CHEN Jin, WEI Xiao-xia, CAI Zi-jian, WU Ru-jian. Spatial distribution and theoretical sampling of galls induced by longan leaf-gall midge, Asphondylia sp.[J]. Fujian Journal of Agricultural Sciences, 2010, 25(6): 731-735.
    [10]YAN Zheng. Spatial distribution of Bactrocera(Zeugodacus) cucurbitae(Coquillett) larva on guava[J]. Fujian Journal of Agricultural Sciences, 2010, 25(5): 627-630.
  • Cited by

    Periodical cited type(4)

    1. 付连双,和阳升,王欣晨,王晓楠,单大鹏,严洪冬,李祥羽,唐贵. 179份高粱种质资源表型鉴定与遗传多样性分析. 东北农业大学学报. 2024(02): 1-9 .
    2. 王辉,王天友,曹新川,刘春艳,张凤娇,何良荣. 南疆陆地棉种质资源遗传多样性及群体结构分析. 分子植物育种. 2022(10): 3434-3447 .
    3. 廖长见,张扬,陈伟,林建新,滕振勇,陈山虎,林静,卢和顶. 优质超甜玉米新品种闽双色4号的选育. 福建农业学报. 2021(04): 386-393 . 本站查看
    4. 陈志坚. 87份糯玉米自交系的遗传多样性分析. 种子. 2021(06): 70-75+2 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (602) PDF downloads (15) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return