Citation: |
DONG K Q, WANG L L, LIU Q Q, et al. Bioinformatics on Structure and Functions of ZmCOL3 |
[1] |
蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1a、ZmTOC1b基因的克隆、表达及亚细胞定位分析 [J]. 华北农学报, 2019, 34(4):24−31. DOI: 10.7668/hbnxb.201751601
CAI Y T, JIA L, TUO H Y. Cloning, expression and subcellular localization of ZmTOC1a andZmTOC1b genes in maize [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 24−31.(in Chinese) DOI: 10.7668/hbnxb.201751601
|
[2] |
POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana [J]. Annals of Botany, 2016, 117(2): 249−256.
|
[3] |
许淑娟, 种康. “先驱”转录因子LEC1在早期胚胎重置春化状态的机制 [J]. 植物学报, 2018, 53(1):1−4. DOI: 10.11983/CBB17234
XU S J, CHONG K. Mechanism of the “pioneer” transcription factor LEC1 in resetting vernalized state in early embryos [J]. Chinese Bulletin of Botany, 2018, 53(1): 1−4.(in Chinese) DOI: 10.11983/CBB17234
|
[4] |
JIN M L, LIU X G, JIA W, et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT [J]. Journal of Integrative Plant Biology, 2018, 60(6): 465−480. DOI: 10.1111/jipb.12632
|
[5] |
赵淑靓. 玉米伪应答调节基因ZmPRR73的克隆与表达分析[D]. 洛阳: 河南科技大学, 2018.
ZHAO S L. Gene Cloning and Expression Analysis of Pseudo-Response Regulator 73 (ZmPRR73) in Maize[D]. Luoyang : Henan University of Science and Technology, 2018. (in Chinese).
|
[6] |
HUNG H Y, SHANNON L M, TIAN F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize [J]. PNAS, 2012, 109(28): E1913−E1921. DOI: 10.1073/pnas.1203189109
|
[7] |
HOLLAND J B. Plant genetics: Two steps on the path to maize adaptation [J]. Current Biology, 2018, 28(18): R1098−R1101. DOI: 10.1016/j.cub.2018.07.049
|
[8] |
GOODMAN M M, MORENO J, CASTILLO F, et al. Using tropical maize germplasm for temperate breeding [J]. Maydica, 2000, 45(3): 221−234.
|
[9] |
DAO A, SANOU J, MITCHELL S E, et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines [J]. BMC Genetics, 2014, 15: 127.
|
[10] |
LIU T L, NEWTON L, LIU M J, et al. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis [J]. Plant Physiology, 2015, 170(1): 528−539.
|
[11] |
BÖHM J, SCHIPPRACK W, UTZ H F, et al. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: A case study from European flint maize [J]. Theoretical and Applied Genetics, 2017, 130(5): 861−873. DOI: 10.1007/s00122-017-2856-x
|
[12] |
BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? [J]. Current Opinion in Biotechnology, 2015, 32: 121−129. DOI: 10.1016/j.copbio.2014.11.023
|
[13] |
贾伟, 尹悦佳, 柳青, 等. 抑制ZmCol3基因表达调控玉米开花期 [J]. 玉米科学, 2017, 25(6):28−33.
JIA W, YIN Y J, LIU Q, et al. Regulation of maize flowering time by down-regulatedZmCol3 gene expression [J]. Journal of Maize Sciences, 2017, 25(6): 28−33.(in Chinese)
|
[14] |
MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution [J]. Annual Review of Plant Biology, 2016, 67: 595−618. DOI: 10.1146/annurev-arplant-043014-115619
|
[15] |
金敏亮. 玉米泛转录组的构建及玉米开花抑制因子ZmCOL3的功能解析[D]. 武汉: 华中农业大学, 2018.
JIN M L. Maize Pan-transcriptome construction and functional analysis of maize flowering repressor ZmCOL3[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese).
|
[16] |
COCKRAM J, THIEL T, STEUERNAGEL B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS One, 2012, 7(9): e45307. DOI: 10.1371/journal.pone.0045307
|
[17] |
VALVERDE F. Constans and the evolutionary origin of photoperiodic timing of flowering [J]. Journal of Experimental Botany, 2011, 62(8): 2453−2463. DOI: 10.1093/jxb/erq449
|
[18] |
胡冬秀, 刘浩, 鲁清, 等. 花生CONSTANS-like(COL)家族基因的克隆与表达分析 [J]. 中国油料作物学报, 2020, 42(5):778−786.
HU D X, LIU H, LU Q, et al. Cloning and expression analysis of CONSTANS-Like(COL) family genes in peanut(Arachis hypogaea L.) [J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 778−786.(in Chinese)
|
[19] |
CROCCO C D, BOTTO J F. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification [J]. Gene, 2013, 531(1): 44−52. DOI: 10.1016/j.gene.2013.08.037
|
[20] |
付建新, 王翊, 戴思兰. 高等植物CO基因研究进展 [J]. 分子植物育种, 2010, 8(5):1008−1016. DOI: 10.3969/mpb.008.001008
FU J X, WANG Y, DAI S L. Advanced research on CO genes in higher plants [J]. Molecular Plant Breeding, 2010, 8(5): 1008−1016.(in Chinese) DOI: 10.3969/mpb.008.001008
|
[21] |
WU W X, ZHANG Y X, ZHANG M, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 1349−1355. DOI: 10.1016/j.bbrc.2017.11.095
|
[22] |
张雅文, 梁山, 徐国云, 等. 烟草CONSTANS-like基因家族的鉴定与分析 [J]. 植物学报, 2021, 56(1):33−43. DOI: 10.11983/CBB20147
ZHANG Y W, LIANG S, XU G Y, et al. Genome-wide identification and analysis of CONSTANS-like gene family in Nicotiana tabacum [J]. Chinese Bulletin of Botany, 2021, 56(1): 33−43.(in Chinese) DOI: 10.11983/CBB20147
|
[23] |
DATTA S, HETTIARACHCHI G H C M, DENG X W, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. The Plant Cell, 2006, 18(1): 70−84.
|
[24] |
KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355−365. DOI: 10.1007/s00425-008-0742-0
|
[25] |
果天宇, 尹悦佳, 贾伟, 等. 玉米ZmCOL3pro217启动子的克隆及功能分析 [J]. 玉米科学, 2020, 28(2):54−60.
GUO T Y, YIN Y J, JIA W, et al. Cloning and functional analysis of ZmCOL3pro217 promoter in maize [J]. Journal of Maize Sciences, 2020, 28(2): 54−60.(in Chinese)
|
[26] |
SHEN C C, LIU H Y, GUAN Z Y, et al. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering [J]. The Plant Cell, 2020, 32(11): 3469−3484. DOI: 10.1105/tpc.20.00067
|
[27] |
WYLIE S J, ADAMS M, CHALAM C, et al. ICTV virus taxonomy profile: Potyviridae [J]. Journal of General Virology, 2017, 98(3): 352−354. DOI: 10.1099/jgv.0.000740
|
[28] |
ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. The Plant Journal, 2001, 28: 619−31.
|