• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
DONG K Q, WANG L L, LIU Q Q, et al. Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein [J]. Fujian Journal of Agricultural Sciences,2021,36(9):999−1006. DOI: 10.19303/j.issn.1008-0384.2021.09.002
Citation: DONG K Q, WANG L L, LIU Q Q, et al. Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein [J]. Fujian Journal of Agricultural Sciences,2021,36(9):999−1006. DOI: 10.19303/j.issn.1008-0384.2021.09.002

Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein

More Information
  • Received Date: May 05, 2021
  • Revised Date: June 05, 2021
  • Available Online: August 09, 2021
  •   Objective  Functions of ZmCOL3 involving the flowering regulation and other mechanisms in maize were investigated by analyzing the structure and functions of the protein encoded by the gene.
      Method  Based on bioinformatics, the physicochemical properties, conserved domain, secondary and tertiary structures, signal peptide, transmembrane domain, subcellular localization, and cis acting elements of ZmCOL3 protein were predicted. Expression of the gene in various organs of a maize plant were analyzed.
      Result  The ZmCOL3-encoded protein contained 335 amino acids with a molecular weight of 35.39 KD and a theoretical isoelectric point of 5.04. It was an unstable acidic, hydrophilic protein located primarily in the nucleus and consisted of a CCT domain and a B-box domain but no signal peptide or transmembrane domain. Its secondary structure was mostly irregular coils with some α helixes and a small number of extended chains and β turns. The homology modeling similarity was 64.15%. The promoter of ZmCOL3 gene not only contained the basic cis acting elements, such as TATA and CAAT boxes, but also light response elements, such as SP1, as well as hormone response elements, such as abscisic acid and methyl jasmonate. In various tissues, the leaves, followed by the male ears, had the highest and significantly higher expression of ZmCOL3 than the primary roots, internodes, or tassels, while and the seeds the lowest.
      Conclusion  The unstable acidic, hydrophilic ZmCOL3 protein contained CCT and B-box domains consistent with the structural characteristics of COL subfamily in the CCT gene family of which it belonged. It was postulated to participate in the regulation of biological clock that affects maize florescence. The promoter of ZmCOL3 gene contained the elements responding to light and various hormones that suggested a possible involvement on the multiple response network regulating the photoperiod and abiotic stress of a maize plant.
  • [1]
    蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1aZmTOC1b基因的克隆、表达及亚细胞定位分析 [J]. 华北农学报, 2019, 34(4):24−31. DOI: 10.7668/hbnxb.201751601

    CAI Y T, JIA L, TUO H Y. Cloning, expression and subcellular localization of ZmTOC1a andZmTOC1b genes in maize [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 24−31.(in Chinese) DOI: 10.7668/hbnxb.201751601
    [2]
    POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana [J]. Annals of Botany, 2016, 117(2): 249−256.
    [3]
    许淑娟, 种康. “先驱”转录因子LEC1在早期胚胎重置春化状态的机制 [J]. 植物学报, 2018, 53(1):1−4. DOI: 10.11983/CBB17234

    XU S J, CHONG K. Mechanism of the “pioneer” transcription factor LEC1 in resetting vernalized state in early embryos [J]. Chinese Bulletin of Botany, 2018, 53(1): 1−4.(in Chinese) DOI: 10.11983/CBB17234
    [4]
    JIN M L, LIU X G, JIA W, et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT [J]. Journal of Integrative Plant Biology, 2018, 60(6): 465−480. DOI: 10.1111/jipb.12632
    [5]
    赵淑靓. 玉米伪应答调节基因ZmPRR73的克隆与表达分析[D]. 洛阳: 河南科技大学, 2018.

    ZHAO S L. Gene Cloning and Expression Analysis of Pseudo-Response Regulator 73 (ZmPRR73) in Maize[D]. Luoyang : Henan University of Science and Technology, 2018. (in Chinese).
    [6]
    HUNG H Y, SHANNON L M, TIAN F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize [J]. PNAS, 2012, 109(28): E1913−E1921. DOI: 10.1073/pnas.1203189109
    [7]
    HOLLAND J B. Plant genetics: Two steps on the path to maize adaptation [J]. Current Biology, 2018, 28(18): R1098−R1101. DOI: 10.1016/j.cub.2018.07.049
    [8]
    GOODMAN M M, MORENO J, CASTILLO F, et al. Using tropical maize germplasm for temperate breeding [J]. Maydica, 2000, 45(3): 221−234.
    [9]
    DAO A, SANOU J, MITCHELL S E, et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines [J]. BMC Genetics, 2014, 15: 127.
    [10]
    LIU T L, NEWTON L, LIU M J, et al. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis [J]. Plant Physiology, 2015, 170(1): 528−539.
    [11]
    BÖHM J, SCHIPPRACK W, UTZ H F, et al. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: A case study from European flint maize [J]. Theoretical and Applied Genetics, 2017, 130(5): 861−873. DOI: 10.1007/s00122-017-2856-x
    [12]
    BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? [J]. Current Opinion in Biotechnology, 2015, 32: 121−129. DOI: 10.1016/j.copbio.2014.11.023
    [13]
    贾伟, 尹悦佳, 柳青, 等. 抑制ZmCol3基因表达调控玉米开花期 [J]. 玉米科学, 2017, 25(6):28−33.

    JIA W, YIN Y J, LIU Q, et al. Regulation of maize flowering time by down-regulatedZmCol3 gene expression [J]. Journal of Maize Sciences, 2017, 25(6): 28−33.(in Chinese)
    [14]
    MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution [J]. Annual Review of Plant Biology, 2016, 67: 595−618. DOI: 10.1146/annurev-arplant-043014-115619
    [15]
    金敏亮. 玉米泛转录组的构建及玉米开花抑制因子ZmCOL3的功能解析[D]. 武汉: 华中农业大学, 2018.

    JIN M L. Maize Pan-transcriptome construction and functional analysis of maize flowering repressor ZmCOL3[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese).
    [16]
    COCKRAM J, THIEL T, STEUERNAGEL B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS One, 2012, 7(9): e45307. DOI: 10.1371/journal.pone.0045307
    [17]
    VALVERDE F. Constans and the evolutionary origin of photoperiodic timing of flowering [J]. Journal of Experimental Botany, 2011, 62(8): 2453−2463. DOI: 10.1093/jxb/erq449
    [18]
    胡冬秀, 刘浩, 鲁清, 等. 花生CONSTANS-like(COL)家族基因的克隆与表达分析 [J]. 中国油料作物学报, 2020, 42(5):778−786.

    HU D X, LIU H, LU Q, et al. Cloning and expression analysis of CONSTANS-Like(COL) family genes in peanut(Arachis hypogaea L.) [J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 778−786.(in Chinese)
    [19]
    CROCCO C D, BOTTO J F. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification [J]. Gene, 2013, 531(1): 44−52. DOI: 10.1016/j.gene.2013.08.037
    [20]
    付建新, 王翊, 戴思兰. 高等植物CO基因研究进展 [J]. 分子植物育种, 2010, 8(5):1008−1016. DOI: 10.3969/mpb.008.001008

    FU J X, WANG Y, DAI S L. Advanced research on CO genes in higher plants [J]. Molecular Plant Breeding, 2010, 8(5): 1008−1016.(in Chinese) DOI: 10.3969/mpb.008.001008
    [21]
    WU W X, ZHANG Y X, ZHANG M, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 1349−1355. DOI: 10.1016/j.bbrc.2017.11.095
    [22]
    张雅文, 梁山, 徐国云, 等. 烟草CONSTANS-like基因家族的鉴定与分析 [J]. 植物学报, 2021, 56(1):33−43. DOI: 10.11983/CBB20147

    ZHANG Y W, LIANG S, XU G Y, et al. Genome-wide identification and analysis of CONSTANS-like gene family in Nicotiana tabacum [J]. Chinese Bulletin of Botany, 2021, 56(1): 33−43.(in Chinese) DOI: 10.11983/CBB20147
    [23]
    DATTA S, HETTIARACHCHI G H C M, DENG X W, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. The Plant Cell, 2006, 18(1): 70−84.
    [24]
    KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355−365. DOI: 10.1007/s00425-008-0742-0
    [25]
    果天宇, 尹悦佳, 贾伟, 等. 玉米ZmCOL3pro217启动子的克隆及功能分析 [J]. 玉米科学, 2020, 28(2):54−60.

    GUO T Y, YIN Y J, JIA W, et al. Cloning and functional analysis of ZmCOL3pro217 promoter in maize [J]. Journal of Maize Sciences, 2020, 28(2): 54−60.(in Chinese)
    [26]
    SHEN C C, LIU H Y, GUAN Z Y, et al. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering [J]. The Plant Cell, 2020, 32(11): 3469−3484. DOI: 10.1105/tpc.20.00067
    [27]
    WYLIE S J, ADAMS M, CHALAM C, et al. ICTV virus taxonomy profile: Potyviridae [J]. Journal of General Virology, 2017, 98(3): 352−354. DOI: 10.1099/jgv.0.000740
    [28]
    ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. The Plant Journal, 2001, 28: 619−31.
  • Cited by

    Periodical cited type(6)

    1. 曾志浩,王思凡,林文波,郭萍萍,袁宗胜,刘芳. 油松林下种植牡丹土壤真菌群落结构及多样性. 福建林业科技. 2024(02): 1-7+18 .
    2. 李骥,王芸,朱启聪,李国壕,张颖,蔺红苹,王锂韫,李敏,唐蜀昆. 濒危红树杂交种海南海桑的杂种劣势与其根际微生物的关联分析. 微生物学报. 2024(08): 2823-2843 .
    3. 吴杨,卢秋云,姜学峰,李永红,彭俊文. 不同套作模式对魔芋根际土壤微生物群落的影响. 南方农业. 2024(11): 19-22 .
    4. 刘敏,甘禧霖,黄小峰,王洋,吴昊,孙睿. 红树林沉积物中可培养细菌的分离及其系统进化分析. 海南热带海洋学院学报. 2023(02): 25-31+83 .
    5. 郑智胜,黄卫红,陈小尘,黄兆斌,薛喜枚,陈锦江,张秋芳. 泉州湾桐花树和老鼠簕根际土壤细菌和真菌群落特征比较. 应用海洋学学报. 2023(04): 686-697 .
    6. 阳长洪,卫婷,李慧君,黄枫城,吴炜龙,杨贵琼,甄珍,蔺中. 菲在红树林不同根际距离中的降解及微生物群落结构变化. 南方农业学报. 2023(12): 3538-3549 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1088) PDF downloads (80) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return