• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
DUAN Y K, YANG H Y, WU W L, et al. Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016
Citation: DUAN Y K, YANG H Y, WU W L, et al. Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):547−554 doi: 10.19303/j.issn.1008-0384.2022.004.016

Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants

doi: 10.19303/j.issn.1008-0384.2022.004.016
  • Received Date: 2021-09-01
  • Accepted Date: 2022-03-17
  • Rev Recd Date: 2022-03-03
  • Available Online: 2022-04-24
  • Publish Date: 2022-04-28
  • Nitrogen is one of the essential elements for plant growth and development. External application of nitrogen promotes plant growth, but excessive fertilization can induce a host of problems on soil and water pollution, ozone layer depletion, and agricultural production cost escalation. In nature, to efficiently utilize the resource, plants have evolved mechanisms that regulate the absorption of the critical nutrient transported from the land. This article reviews such fundamental natural functions, in addition to the processes of NO3N, NH4+-N, and organic nitrogen assimilations as well as the roles of transcription factors and miRNAs in response to nitrogen fertilization. Based on the information, improvements on the nitrogen use efficiency of plants, agriculture productivity, and breeding and cultivation of new crop varieties could be studied and realized.
  • loading
  • [1]
    RAVEN J A, HANDLEY L L, ANDREWS M. Global aspects of C/N interactions determining plant-environment interactions [J]. Journal of Experimental Botany, 2004, 55(394): 11−25.
    [2]
    INOKUCHI R, KUMA K I, MIYATA T, et al. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives [J]. Physiologia Plantarum, 2002, 116(1): 1−11. doi: 10.1034/j.1399-3054.2002.1160101.x
    [3]
    CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417−423. doi: 10.1023/A:1027353305250
    [4]
    郭伟, 樊存虎. 浅谈我国氮肥利用问题 [J]. 南方农机, 2021, 52(20):18−20. doi: 10.3969/j.issn.1672-3872.2021.20.005

    GUO W, FAN C H. Discussion on nitrogen fertilizer utilization in China [J]. South Agricultural Machinery, 2021, 52(20): 18−20.(in Chinese) doi: 10.3969/j.issn.1672-3872.2021.20.005
    [5]
    LI S T, HE P, JIN J Y. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture [J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1191−1197. doi: 10.1002/jsfa.5874
    [6]
    武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展 [J]. 植物生理学报, 2018, 54(9):1401−1408.

    WU J N, WEI X D, LI X, et al. Research progress in nitrogen use efficiency in plants [J]. Plant Physiology Journal, 2018, 54(9): 1401−1408.(in Chinese)
    [7]
    王兴萌, 陈志豪, 李永春, 等. 氮素形态及配比对毛竹和青冈实生苗生长特性的影响 [J]. 生态学杂志, 2019, 38(09):2655−2661.

    WANG X M, CHEN Z H, LI Y C, et al. Effects of different nitrogen forms and ratios on the growth of Phyllostachys edulis and Quercus glauca seedlings [J]. Chinese Journal of Ecology, 2019, 38(09): 2655−2661.(in Chinese)
    [8]
    彭正萍. 植物氮素吸收、运转和分配调控机制研究 [J]. 河北农业大学学报, 2019, 42(2):1−5.

    PENG Z P. Absorption, transportation and regulation of nitrogen element in plants [J]. Journal of Hebei Agricultural University, 2019, 42(2): 1−5.(in Chinese)
    [9]
    VON WIRÉN N, GAZZARRINI S, FROMMER W B. Regulation of mineral nitrogen uptake in plants [J]. Plant and Soil, 1997, 196(2): 191−199. doi: 10.1023/A:1004241722172
    [10]
    XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency [J]. Annual Review of Plant Biology, 2012, 63: 153−182. doi: 10.1146/annurev-arplant-042811-105532
    [11]
    SCHRADER L E, DOMSKA D, JUNG JR P E, et al. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L. )1 [J]. Agronomy Journal, 1972, 64(5): 690−695. doi: 10.2134/agronj1972.00021962006400050042x
    [12]
    杨肖娥, 孙羲. 不同水稻品种NH4+和NO3-吸收的动力学 [J]. 土壤通报, 1991, 22(5):222−224.

    YANG X E, SUN X. Kinetics of NH4+ and NO3- uptake by different rice varieties [J]. Chinese Journal of Soil Science, 1991, 22(5): 222−224.(in Chinese)
    [13]
    段娜, 章尧想, 刘芳, 等. 植物氮素吸收及其转运蛋白研究进展 [J]. 分子植物育种, 2015, 13(2):461−468.

    DUAN N, ZHANG Y X, LIU F, et al. Research progress on nitrogen uptake and transport protein in plant [J]. Molecular Plant Breeding, 2015, 13(2): 461−468.(in Chinese)
    [14]
    YUAN L X, GU R L, XUAN Y H, et al. Allosteric regulation of transport activity by heterotrimerization of Arabidopsis ammonium transporter complexes in vivo [J]. The Plant Cell, 2013, 25(3): 974−984. doi: 10.1105/tpc.112.108027
    [15]
    李海霞, 邢亚娟, 李正华, 等. 不同氮素形态对蒙古栎幼苗生长及生理特性的影响 [J]. 森林工程, 2021, 37(2):35−40.

    LI H X, XING Y J, LI Z H, et al. Effects of different nitrate form on the growth and physiological characteristics for Quercus mongolica seedlings [J]. Forest Engineering, 2021, 37(2): 35−40.(in Chinese)
    [16]
    潘霞. 蓝莓氮形态偏好性及其相关机理研究[D]. 金华: 浙江师范大学, 2019.

    PAN X. Study on nitrogen form preference of blueberry and its related mechanism[D]. Jinhua: Zhejiang Normal University, 2019. (in Chinese)
    [17]
    May Sandar Kyaing, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用 [J]. 生物技术进展, 2011, 1(3):159−164.

    KYAING M S, GU L J, CHENG H M. The role of nitrate reductase and nitrite reductase in plant [J]. Current Biotechnology, 2011, 1(3): 159−164.(in Chinese)
    [18]
    邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展 [J]. 中国农业科技导报, 2015, 17(2):109−117.

    XING Y, MA X H. Research progress on effect of nitrogen form on plant growth [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 109−117.(in Chinese)
    [19]
    IQBAL A, DONG Q, ALAMZEB M, et al. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency [J]. Journal of the Science of Food and Agriculture, 2020, 100(3): 904−914. doi: 10.1002/jsfa.10085
    [20]
    LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants [J]. The Plant Journal, 2014, 80(2): 230−241. doi: 10.1111/tpj.12626
    [21]
    钟开新, 王亚琴. 植物氮素吸收与转运的研究进展 [J]. 广西植物, 2011, 31(3):414−417.

    ZHONG K X, WANG Y Q. Progress on nitrogen uptake and transport in plant [J]. Guihaia, 2011, 31(3): 414−417.(in Chinese)
    [22]
    OKAMOTO M, KUMAR A, LI W B, et al. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1 [J]. Plant Physiology, 2006, 140(3): 1036−1046. doi: 10.1104/pp.105.074385
    [23]
    ARAKI R, HASEGAWA H. Expression of rice (Oryza sativa L. ) genes involved in high-affinity nitrate transport during the period of nitrate induction [J]. Breeding Science, 2006, 56(3): 295−302. doi: 10.1270/jsbbs.56.295
    [24]
    LIN S H, KUO H F, CANIVENC G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport [J]. The Plant Cell, 2008, 20(9): 2514−2528. doi: 10.1105/tpc.108.060244
    [25]
    DE ANGELI A, MONACHELLO D, EPHRITIKHINE G, et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles [J]. Nature, 2006, 442(7105): 939−942. doi: 10.1038/nature05013
    [26]
    LIU X, LIU F, ZHANG L, et al. GsCLC-c2 from wild soybean confers chloride/salt tolerance to transgenic Arabidopsis and soybean composite plants by regulating anion homeostasis [J]. Physiologia Plantarum, 2021, 172(4): 1867−1879. doi: 10.1111/ppl.13396
    [27]
    曾廷儒, 张静, 张登峰, 等. 玉米ZmCLCa基因克隆及其对氮素吸收的功能验证 [J]. 植物遗传资源学报, 2017, 18(1):112−116.

    ZENG T R, ZHANG J, ZHANG D F, et al. Cloning of ZmCLCa gene in maize and its functional characterization of nitrogen absorption [J]. Journal of Plant Genetic Resources, 2017, 18(1): 112−116.(in Chinese)
    [28]
    LÉRAN S, VARALA K, BOYER J C, et al. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants [J]. Trends in Plant Science, 2014, 19(1): 5−9. doi: 10.1016/j.tplants.2013.08.008
    [29]
    CUBERO-FONT P, MAIERHOFER T, JASLAN J, et al. Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation [J]. Current Biology, 2016, 26(16): 2213−2220. doi: 10.1016/j.cub.2016.06.045
    [30]
    BREUILLIN-SESSOMS F, FLOSS D S, GOMEZ S K, et al. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3 [J]. The Plant Cell, 2015, 27(4): 1352−1366. doi: 10.1105/tpc.114.131144
    [31]
    杜旭华. 氮素形态对茶树生长及氮素吸收利用的影响[D]. 南京: 南京林业大学, 2009.

    DU X H. Research on the effect of nitrogen form on growth physiology and nitrogen absorption-utilization in four tea varieties (Camellia sinensis L. )[D]. Nanjing: Nanjing Forestry University, 2009. (in Chinese)
    [32]
    GLASS A D M, BRITTO D T, KAISER B N, et al. The regulation of nitrate and ammonium transport systems in plants [J]. Journal of Experimental Botany, 2002, 53(370): 855−864. doi: 10.1093/jexbot/53.370.855
    [33]
    陈坤. 植物氮素高效吸收研究进展 [J]. 安徽农业科学, 2018, 46(26):31−33. doi: 10.3969/j.issn.0517-6611.2018.26.010

    CHEN K. Research advances on nitrogen uptake in plant [J]. Journal of Anhui Agricultural Sciences, 2018, 46(26): 31−33.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.26.010
    [34]
    MITANI-UENO N, YAMAJI N, MA J F. Transport System of Mineral Elements in Rice [J]. Rice Genomics, Genetics and Breeding, 2018(13): 223−240.
    [35]
    SONODA Y, IKEDA A, SAIKI S, et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice [J]. Plant and Cell Physiology, 2003, 44(12): 1396−1402. doi: 10.1093/pcp/pcg169
    [36]
    蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望 [J]. 生命科学, 2018, 30(10):1060−1071.

    JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants [J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1060−1071.(in Chinese)
    [37]
    袁伟, 董元华, 王辉. 植物对氨基酸态氮吸收和利用的研究进展 [J]. 中国土壤与肥料, 2009(4):4−9. doi: 10.3969/j.issn.1673-6257.2009.04.002

    YUAN W, DONG Y H, WANG H. Uptake and utilization of amino acid nitrogen by plants [J]. Soil and Fertilizer Sciences in China, 2009(4): 4−9.(in Chinese) doi: 10.3969/j.issn.1673-6257.2009.04.002
    [38]
    CHRISPEELS M J, CRAWFORD N M, SCHROEDER J I. Proteins for transport of water and mineral nutrients across the membranes of plant cells [J]. The Plant Cell, 1999, 11(4): 661−675. doi: 10.1105/tpc.11.4.661
    [39]
    田发祥, 纪雄辉, 官迪, 等. 氮肥增效剂的研究进展 [J]. 杂交水稻, 2020, 35(5):7−13.

    TIAN F X, JI X H, GUAN D, et al. Advances of research on nitrogen inhibitors [J]. Hybrid Rice, 2020, 35(5): 7−13.(in Chinese)
    [40]
    王彦辉, 韩燕丽, 樊永强, 等. 叶面喷施尿素对谷子郑农谷09-6光合特性及产量的影响 [J]. 江苏农业科学, 2020, 48(5):92−96.

    WANG Y H, HAN Y L, FAN Y Q, et al. Effects of foliar spray of urea on photosynthetic characteristics and yield of millet cultivar Zhengnonggu 09-6 [J]. Jiangsu Agricultural Sciences, 2020, 48(5): 92−96.(in Chinese)
    [41]
    栗方亮, 李忠佩, 刘明, 等. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响 [J]. 中国生态农业学报, 2012, 20(9):1113−1118.

    LI F L, LI Z P, LIU M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics [J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1113−1118.(in Chinese)
    [42]
    曹小闯, 吴良欢, 马庆旭, 等. 高等植物对氨基酸态氮的吸收与利用研究进展 [J]. 应用生态学报, 2015, 26(3):919−929.

    CAO X C, WU L H, MA Q X, et al. Advances in studies of absorption and utilization of amino acids by plants: A review [J]. Chinese Journal of Applied Ecology, 2015, 26(3): 919−929.(in Chinese)
    [43]
    张夫道, 孙羲. 氨基酸对水稻营养作用的研究 [J]. 中国农业科学, 1984, 17(5):61−66.

    ZHANG F D, SUN X. A study of nutrition of amino acids in rice seedlings [J]. Scientia Agricultura Sinica, 1984, 17(5): 61−66.(in Chinese)
    [44]
    RENTSCH D, SCHMIDT S, TEGEDER M. Transporters for uptake and allocation of organic nitrogen compounds in plants [J]. FEBS Letters, 2007, 581(12): 2281−2289. doi: 10.1016/j.febslet.2007.04.013
    [45]
    SU Y H, FROMMER W B, LUDEWIG U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis [J]. Plant Physiology, 2004, 136(2): 3104−3113. doi: 10.1104/pp.104.045278
    [46]
    HAMMES U Z, NIELSEN E, HONAAS L A, et al. AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis [J]. The Plant Journal, 2006, 48(3): 414−426. doi: 10.1111/j.1365-313X.2006.02880.x
    [47]
    ISHIYAMA K, INOUE E, WATANABE-TAKAHASHI A, et al. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis [J]. Journal of Biological Chemistry, 2004, 279(16): 16598−16605. doi: 10.1074/jbc.M313710200
    [48]
    KOJIMA S, KIMURA M, NOZAKI Y, et al. Analysis of a promoter for the NADH - glutamate synthase gene in rice (Oryza sativa): Cell type-specific expression in developing organs of transgenic rice plants [J]. Functional Plant Biology, 2000, 27(9): 787. doi: 10.1071/PP99145
    [49]
    PATTERSON K, CAKMAK T, COOPER A, et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants [J]. Plant, Cell & Environment, 2010, 33(9): 1486−1501.
    [50]
    LI Q, LI B H, KRONZUCKER H J, et al. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity [J]. Plant, Cell & Environment, 2010, 33(9): 1529−1542.
    [51]
    赵凤艳, 魏自民, 陈翠玲. 氮肥用量对蔬菜产量和品质的影响 [J]. 农业系统科学与综合研究, 2001, 17(1):43−44. doi: 10.3969/j.issn.1001-0068.2001.01.013

    ZHAO F Y, WEI Z M, CHEN C L. The effect of N application rate on yield and quality of vegetable [J]. System Sciemces and Comprehensive Studies in Agriculture, 2001, 17(1): 43−44.(in Chinese) doi: 10.3969/j.issn.1001-0068.2001.01.013
    [52]
    FOX G G, RATCLIFFE R G, ROBINSON S A, et al. Evidence for deamination by glutamate dehydrogenase in higher plants: Commentary [J]. Canadian Journal of Botany, 1995, 73(7): 1112−1115. doi: 10.1139/b95-120
    [53]
    SKOPELITIS D S, PARANYCHIANAKIS N V, PASCHALIDIS K A, et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine [J]. The Plant Cell, 2006, 18(10): 2767−2781. doi: 10.1105/tpc.105.038323
    [54]
    O'BRIEN J A, VEGA A, BOUGUYON E, et al. Nitrate transport, sensing, and responses in plants [J]. Molecular Plant, 2016, 9(6): 837−856. doi: 10.1016/j.molp.2016.05.004
    [55]
    ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture [J]. Science, 1998, 279(5349): 407−409. doi: 10.1126/science.279.5349.407
    [56]
    REMANS T, NACRY P, PERVENT M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19206−19211. doi: 10.1073/pnas.0605275103
    [57]
    YU L H, MIAO Z Q, QI G F, et al. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals [J]. Molecular Plant, 2014, 7(11): 1653−1669. doi: 10.1093/mp/ssu088
    [58]
    RUBIN G, TOHGE T, MATSUDA F, et al. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis [J]. The Plant Cell, 2009, 21(11): 3567−3584. doi: 10.1105/tpc.109.067041
    [59]
    KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling [J]. Nature Communications, 2013, 4: 1617. doi: 10.1038/ncomms2621
    [60]
    MARCHIVE C, ROUDIER F, CASTAINGS L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants [J]. Nature Communications, 2013, 4: 1713. doi: 10.1038/ncomms2650
    [61]
    YU L H, WU J, TANG H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation [J]. Scientific Reports, 2016, 6: 27795. doi: 10.1038/srep27795
    [62]
    CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition [J]. Current Biology, 2016, 26(5): 640−646. doi: 10.1016/j.cub.2015.12.066
    [63]
    HU J, WANG Y X, FANG Y X, et al. A rare allele of GS2 enhances grain size and grain yield in rice [J]. Molecular Plant, 2015, 8(10): 1455−1465. doi: 10.1016/j.molp.2015.07.002
    [64]
    DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice [J]. Nature Plants, 2016, 2: 15203. doi: 10.1038/nplants.2015.203
    [65]
    KAWASHIMA T, SHIOI T. microRNA, emerging role as a biomarker of heart failure [J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2011, 75(2): 268−269. doi: 10.1253/circj.CJ-10-1254
    [66]
    VOINNET O. Origin, biogenesis, and activity of plant microRNAs [J]. Cell, 2009, 136(4): 669−687. doi: 10.1016/j.cell.2009.01.046
    [67]
    XU Z H, ZHONG S H, LI X H, et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots [J]. PLoS One, 2011, 6(11): e28009. doi: 10.1371/journal.pone.0028009
    [68]
    FUJII H, CHIOU T J, LIN S, et al. A miRNA involved in phosphate-starvation response in Arabidopsis [J]. Current Biology, 2005, 15(22): 2038−2043. doi: 10.1016/j.cub.2005.10.016
    [69]
    PANT B D, MUSIALAK-LANGE M, NUC P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing [J]. Plant Physiology, 2009, 150(3): 1541−1555. doi: 10.1104/pp.109.139139
    [70]
    ZHAO M, DING H, ZHU J K, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis [J]. New Phytologist, 2011, 190(4): 906−915. doi: 10.1111/j.1469-8137.2011.03647.x
    [71]
    YAN Y S, WANG H C, HAMERA S, et al. miR444a has multiple functions in the rice nitrate-signaling pathway [J]. The Plant Journal, 2014, 78(1): 44−55. doi: 10.1111/tpj.12446
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (943) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return