• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
HE F Y, SHI C, DONG D, et al. Microbe-mediated Phytoremediation on Low Concentration Oil Sludge [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1344−1353. DOI: 10.19303/j.issn.1008-0384.2022.010.014
Citation: HE F Y, SHI C, DONG D, et al. Microbe-mediated Phytoremediation on Low Concentration Oil Sludge [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1344−1353. DOI: 10.19303/j.issn.1008-0384.2022.010.014

Microbe-mediated Phytoremediation on Low Concentration Oil Sludge

More Information
  • Received Date: February 28, 2022
  • Revised Date: May 26, 2022
  • Available Online: November 28, 2022
  •   Objective  Potential of applying native Xinjiang plants in combination with microbes as a bioagent to treat low concentration oil sludge pollution was explored.
      Method  Three treatments of microbes, plants, and plant-microbe combination that used plant including Cynodon dactylon, Festuca elata, Lolium Perenne, or Sorghum sudanense and the microbes including Candida lipolytica (Microbe A), Bacillus subtilis PL-2 (Bacterium B), and/or B. subtilis XJ-16 (Bacterium C) were conducted along with control in a pot experiment for 120 d. Effects of the treatments on petroleum hydrocarbon residues, and microbial population, as well as biomass and chlorophyll content of the plants, were determined.
      Result  Under the single-factor treatments, C. dactylon, S. sudanense, Bacterium B, or Bacterium C provided relatively similar effect in degrading petroleum hydrocarbons with 31.39%, 34.19%, 33.71%, and 33.39% reductions, respectively, which were significantly higher than control (P<0.05). The plant-microbe combinations, on the other hand, showed significantly greater pollution remedying effect, such as achieved by incorporating C. dactylon with Bacterium A, B, and C that delivered the hydrocarbon removal rates of 43.02%, 40.20%, and 42.54%, respectively. Meanwhile, the culturable bacteria count increased significantly from 1.50×105 cfu·g−1 to 2.59×105 cfu·g−1 and fungi count from 4.32×104 cfu·g−1 to 5.53×104 cfu·g−1. In addition, the dry weight and total chlorophyll content of C. dactylon rose significantly in the presence of the microbes (P<0.05).
      Conclusion  In view of petroleum hydrocarbon residue, microbial population, plant biomass, and leaf chlorophyll content, it appeared that the combined applications of Xinjiang native plant C. dactylon with yeast C. lipolytica and bacterium B. subtilis PL-2 or XJ-16 could be feasible for cleaning the environmental pollution caused by low concentration oil sludge in the area.
  • [1]
    包清华, 黄立信, 修建龙, 等. 油气田含油污泥生物处理技术研究进展 [J]. 化工进展, 2021, 40(5):2762−2773. DOI: 10.16085/j.issn.1000-6613.2020-1299

    BAO Q H, HUANG L X, XIU J L, et al. Development in the biological treatment of oily sludge in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2762−2773.(in Chinese) DOI: 10.16085/j.issn.1000-6613.2020-1299
    [2]
    郭盼, 刘正宁, 李阳, 等. 浅析含油污泥处理技术 [J]. 东方电气评论, 2019, 33(3):6−9. DOI: 10.3969/j.issn.1001-9006.2019.03.002

    GUO P, LIU Z N, LI Y, et al. Analysis on oily sludge treatment technology [J]. Dongfang Electric Review, 2019, 33(3): 6−9.(in Chinese) DOI: 10.3969/j.issn.1001-9006.2019.03.002
    [3]
    梁宏宝, 张全娟, 陈洪涛, 等. 含油污泥联合处理技术的应用现状与展望 [J]. 环境工程技术学报, 2020, 10(1):118−125. DOI: 10.12153/j.issn.1674-991X.20190065

    LIANG H B, ZHANG Q J, CHEN H T, et al. Application status and prospect of combined treatment technology for oily sludge [J]. Journal of Environmental Engineering Technology, 2020, 10(1): 118−125.(in Chinese) DOI: 10.12153/j.issn.1674-991X.20190065
    [4]
    新疆维吾尔自治区质量监督局. 新疆油气田含油污泥及钻井固体废物处理处置技术规范: DB 65/T 3999 -2017[S]. 新疆: 2017.
    [5]
    HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: A review [J]. Journal of Hazardous Materials, 2013, 261: 470−490. DOI: 10.1016/j.jhazmat.2013.07.069
    [6]
    李俊生, 肖能文. 陆地石油开采生态风险评估的技术研究[M]. 北京: 中国环境出版社, 2013.
    [7]
    马强, 张旭红, 林爱军, 等. 土壤石油烃污染的植物毒性及植物-微生物联合降解 [J]. 环境工程学报, 2009, 3(3):544−548.

    MA Q, ZHANG X H, LIN A J, et al. Phytoxicity and biodegradation of petroleum hydrocarbon contamination in soil [J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 544−548.(in Chinese)
    [8]
    王丽萍, 朱新萍, 董双快, 等. 苏丹草与紫花苜蓿对新疆原油污染土壤的响应 [J]. 环境工程, 2016, 34(11):145−149.

    WANG L P, ZHU X P, DONG S K, et al. Response of sorghum sudanense and Medicago sativa growing on soil contaminated with crude oil in Xinjiang [J]. Environmental Engineering, 2016, 34(11): 145−149.(in Chinese)
    [9]
    郭鹏, 李汉周, 刘松林, 等. 油田含油污泥土壤降解与修复试验研究 [J]. 石油与天然气化工, 2019, 48(6):105−110. DOI: 10.3969/j.issn.1007-3426.2019.06.021

    GUO P, LI H Z, LIU S L, et al. Study on degradation and rehabilitation of oily sludge soil in oil field [J]. Chemical Engineering of Oil & Gas, 2019, 48(6): 105−110.(in Chinese) DOI: 10.3969/j.issn.1007-3426.2019.06.021
    [10]
    史德青, 张建, 祝威, 等. 胜利油田含油污泥的植物修复研究 [J]. 环境污染与防治, 2008, 30(8):52−55. DOI: 10.3969/j.issn.1001-3865.2008.08.014

    SHI D Q, ZHANG J, ZHU W, et al. Phytoremediation of oily sludge of shengli oilfield [J]. Environmental Pollution & Control, 2008, 30(8): 52−55.(in Chinese) DOI: 10.3969/j.issn.1001-3865.2008.08.014
    [11]
    李文娆, 李小利, 张晓, 等. 甜高粱/紫花苜蓿对石油污染土壤的光合适应性研究 [J]. 河南大学学报(自然科学版), 2015, 45(3):327−333.

    LI W R, LI X L, ZHANG X, et al. Photosynthetic adaptability of sweet Sorghum and alfalfa to crude oil-polluted soils [J]. Journal of Henan University (Natural Science), 2015, 45(3): 327−333.(in Chinese)
    [12]
    ALI M H, KHAN M I, BASHIR S, et al. Biochar and Bacillus sp. MN54 assisted phytoremediation of diesel and plant growth promotion of maize in hydrocarbons contaminated soil [J]. Agronomy, 2021, 11(9): 1795. DOI: 10.3390/agronomy11091795
    [13]
    ZHOU Q X, CAI Z, ZHANG Z N, et al. Ecological remediation of hydrocarbon contaminated soils with weed plant [J]. Journal of Resources and Ecology, 2011, 2(2): 97−105.
    [14]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [15]
    沈萍, 陈向东. 微生物学实验[M]. 4版. 北京: 高等教育出版社, 2007.
    [16]
    王如刚, 王敏, 牛晓伟, 等. 超声-索氏萃取-重量法测定土壤中总石油烃含量 [J]. 分析化学, 2010, 38(3):417−420.

    WANG R G, WANG M, NIU X W, et al. Determination of total petroleum hydrocarbons content in soil by ultrasonic-soxhlet extraction-gravimetric analysis [J]. Chinese Journal of Analytical Chemistry, 2010, 38(3): 417−420.(in Chinese)
    [17]
    赵媛媛, 张万坤, 马慧, 等. 降解菌ZQ5与紫茉莉对芘污染土壤的联合修复 [J]. 环境工程学报, 2013, 7(7):2752−2756.

    ZHAO Y Y, ZHANG W K, MA H, et al. Microbial-phytoremediation of pyrene contaminated soil using pyrene-degrading strain ZQ5 with Mirabilis Jalapa [J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2752−2756.(in Chinese)
    [18]
    刘永军, 曹中利, 贾海燕, 等. 黑麦草-不动杆菌组合体系对石油污染土壤的生物强化修复 [J]. 化工环保, 2018, 38(1):101−105. DOI: 10.3969/j.issn.1006-1878.2018.01.018

    LIU Y J, CAO Z L, JIA H Y, et al. Enhanced bioremediation of petroleum-contaminated soil using ryegrass-acinetobacter combination system [J]. Environmental Protection of Chemical Industry, 2018, 38(1): 101−105.(in Chinese) DOI: 10.3969/j.issn.1006-1878.2018.01.018
    [19]
    欧阳威, 刘红, 于勇勇, 等. 高羊茅对微生物强化修复石油污染土壤影响的研究 [J]. 环境污染治理技术与设备, 2006(1):94−97.

    OUYANG W, LIU H, YU Y Y, et al. The combined effects of tall fescue(Festuca arundinace) phyto-remediation and bio-augmentation on treatment of oil-contaminated soil [J]. Techniques and Equipment for Environmental Pollution Control, 2006(1): 94−97.(in Chinese)
    [20]
    HOU J Y, LIU W X, WANG B B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response [J]. Chemosphere, 2015, 138: 592−598. DOI: 10.1016/j.chemosphere.2015.07.025
    [21]
    GLICK B R. Using soil bacteria to facilitate phytoremediation [J]. Biotechnology Advances, 2010, 28(3): 367−374. DOI: 10.1016/j.biotechadv.2010.02.001
    [22]
    胥九兵, 迟建国, 邱维忠, 等. 石油降解菌剂的研制及其在石油污染土壤修复中的应用 [J]. 生物加工过程, 2009, 7(6):21−24. DOI: 10.3969/j.issn.1762-3678.2009.06.004

    XU J B, CHI J G, QIU W Z, et al. Application of bacterial agent capable of degrading petroleum for remediation of oil-contaminated soil [J]. Chinese Journal of Bioprocess Engineering, 2009, 7(6): 21−24.(in Chinese) DOI: 10.3969/j.issn.1762-3678.2009.06.004
    [23]
    王京秀, 张志勇, 万云洋, 等. 植物-微生物联合修复石油污染土壤的实验研究 [J]. 环境工程学报, 2014, 8(8):3454−3460.

    WANG J X, ZHANG Z Y, WAN Y Y, et al. Experimental study on plant-microbial remediation of oil-contaminated soil [J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3454−3460.(in Chinese)
    [24]
    王洪. 多环芳烃污染农田土壤原位生物修复技术研究[D]. 沈阳: 东北大学, 2011.

    WANG H. Research on In-situ bioremediation for farm soil contaminated with polycyclic aromatic hydrocarbons[D]. Shenyang: Northeastern University, 2011. (in Chinese)
    [25]
    刘魏魏, 尹睿, 林先贵, 等. 生物表面活性剂-微生物强化紫花苜蓿修复多环芳烃污染土壤 [J]. 环境科学, 2010, 31(4):1079−1084.

    LIU W W, YIN R, LIN X G, et al. Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHs) contaminated soils with alfalfa (Medicago sativa L. ) [J]. Environmental Science, 2010, 31(4): 1079−1084.(in Chinese)
    [26]
    旷远文, 温达志, 钟传文, 等. 根系分泌物及其在植物修复中的作用 [J]. 植物生态学报, 2003, 27(5):709−717. DOI: 10.3321/j.issn:1005-264X.2003.05.020

    KUANG Y W, WEN D Z, ZHONG C W, et al. Root exudates and their roles in phytoremediation [J]. Acta Phytoecologica Sinica, 2003, 27(5): 709−717.(in Chinese) DOI: 10.3321/j.issn:1005-264X.2003.05.020
    [27]
    JONES D L, DARRAH P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere [J]. Plant and Soil, 1994, 166(2): 247−257. DOI: 10.1007/BF00008338
    [28]
    MARSCHNER H, ROMHELD V, CAKMAK I. Root-induced changes of nutrient availability in the rhizosphere [J]. Journal of Plant Nutrition, 1987, 10(9): 1175−1184. DOI: 10.1080/01904168709363645
    [29]
    LYNCH J M, WHIPPS J M. Substrate flow in the rhizosphere [J]. Plant and Soil, 1990, 129(1): 1−10. DOI: 10.1007/BF00011685
    [30]
    YANG C H, CROWLEY D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Applied and Environmental Microbiology, 2000, 66(1): 345−351. DOI: 10.1128/AEM.66.1.345-351.2000
    [31]
    王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤 [J]. 江苏农业科学, 2016, 44(5):526−529.

    WANG L L, YANG Q. Inoculating Bacillus subtilis and arbuscular mycorrhizal fungi to promote remediation of oil contaminated soil by Trifolium repens [J]. Jiangsu Agricultural Sciences, 2016, 44(5): 526−529.(in Chinese)
    [32]
    高乃媛, 刘宪斌, 赵兴茹. 石油烃对翅碱蓬生理特性的影响及植物-微生物联合降解 [J]. 环境工程学报, 2013, 7(4):1578−1582.

    GAO N Y, LIU X B, ZHAO X R. Influence of oil in soil on growth and physiological indexes of Suaeda heteroptera and plant-microbial remediation [J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1578−1582.(in Chinese)
    [33]
    豆胜才. 红平红球菌KB1协同苜蓿降解石油烃的生态学效应[D]. 兰州: 兰州理工大学, 2020.

    DOU S C. Ecological effect of Rhodococcus erythropolis Kb1 on alfalfa degradation of petroleum hydrocarbons[D]. Lanzhou: Lanzhou University of Technology, 2020. (in Chinese)
    [34]
    雒晓芳, 陈丽华, 王冬梅, 等. 不同石油浓度对两种作物生理生化的影响 [J]. 生物技术通报, 2016, 32(10):135−140.

    LUO X F, CHEN L H, WANG D M, et al. The influence for two corps physiological index by the different petroleum density [J]. Biotechnology Bulletin, 2016, 32(10): 135−140.(in Chinese)
    [35]
    岳冰冰, 李鑫, 任芳菲, 等. 石油污染对紫花苜蓿部分生理指标的影响 [J]. 草业科学, 2011, 28(2):236−240. DOI: 10.3969/j.issn.1001-0629.2011.02.013

    YUE B B, LI X, REN F F, et al. Effects of petroleum contamination on some of physiological indexes of alfalfa [J]. Pratacultural Science, 2011, 28(2): 236−240.(in Chinese) DOI: 10.3969/j.issn.1001-0629.2011.02.013
    [36]
    HO C H, BANKS M K. Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes [J]. Bioremediation Journal, 2006, 10(3): 93−104. DOI: 10.1080/10889860600939609
    [37]
    BINET P, PORTAL J M, LEYVAL C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass [J]. Soil Biology and Biochemistry, 2000, 32(14): 2011−2017. DOI: 10.1016/S0038-0717(00)00100-0
    [38]
    ASLANTAŞ R, ÇAKMAKÇI R, ŞAHIN F. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions [J]. Scientia Horticulturae, 2007, 111(4): 371−377. DOI: 10.1016/j.scienta.2006.12.016
    [39]
    RYU C M, HU C H, LOCY R D, et al. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana [J]. Plant and Soil, 2005, 268(1): 285−292. DOI: 10.1007/s11104-004-0301-9
    [40]
    BELIMOV A A, DODD I C, HONTZEAS N, et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling [J]. New Phytologist, 2009, 181(2): 413−423. DOI: 10.1111/j.1469-8137.2008.02657.x
  • Related Articles

    [1]SUN Li, CHEN Xia, ZHENG Hanqing, WANG Zhiqing, FANG Guihua. Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius[J]. Fujian Journal of Agricultural Sciences, 2023, 38(6): 732-738. DOI: 10.19303/j.issn.1008-0384.2023.06.012
    [2]LV Lin, YANG Chengdong, ZHANG Xue, YU Ge, CHEN Taixu, CHEN Qinghe. Effect of TOR Inhibitor Rapamycin on Growth, Development, and Autophagy of Peronophythora litchii[J]. Fujian Journal of Agricultural Sciences, 2022, 37(11): 1448-1453. DOI: 10.19303/j.issn.1008-0384.2022.011.010
    [3]CHANG Le, WANG Lixia, GUO Erhu, ZHANG Aiying. Effect of Plant Growth Regulators on Growth and Yield of Spring Foxtail Millet[J]. Fujian Journal of Agricultural Sciences, 2020, 35(12): 1296-1303. DOI: 10.19303/j.issn.1008-0384.2020.12.002
    [4]ZENG Shaomin, HUANG Xinzhong, CHEN Xiaoming. Growth, Development, and Fruit Quality and Yield of Varieties of Pear under Rain-shelter Cultivation[J]. Fujian Journal of Agricultural Sciences, 2020, 35(8): 837-844. DOI: 10.19303/j.issn.1008-0384.2020.08.004
    [5]CHU Shi-hai, CONG Sheng-bo, LI Ru-hai, HUANG Qi-chao, HOU You-ming. Effects of Short-term High-temperature Exposure on Growth, Development and Reproduction of Herpetogramma basalis (Lepidoptera: Crambidae)[J]. Fujian Journal of Agricultural Sciences, 2019, 34(11): 1288-1293. DOI: 10.19303/j.issn.1008-0384.2019.11.008
    [6]XIE Zhen-xing, ZHUO Chuan-ying, LIN Qi, JIANG Zhao-wei. Effects of Nitrogen Fertilization on Growth and Grain Yield of Ratoon-rice, Tianyouhuazhan[J]. Fujian Journal of Agricultural Sciences, 2017, 32(8): 849-853. DOI: 10.19303/j.issn.1008-0384.2017.08.008
    [7]ZHANG Hui, LI Hui-ling, WANG Ding-feng, LI Liang-de, WANG Qing-sen, ZENG Ming-sen, WU Guang-yuan. Effect of UV-B on Growth of Ectropis oblqua Larvae[J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 487-490. DOI: 10.19303/j.issn.1008-0384.2016.05.009
    [8]LI Wen-yang, LIU Yuan, CHEN Xin-zhu, ZHANG Xiao-pei, GAO Cheng-fang, DONG Xiao-ning. Growth and Development Indices Measuring and the Growth Curve Fitting Analysis of Fuqing Goats[J]. Fujian Journal of Agricultural Sciences, 2015, 30(6): 545-548. DOI: 10.19303/j.issn.1008-0384.2015.06.003
    [9]ZOU Wen-tong, XIONG De-zhong. Effects of available calcium in soil on growth of flue-cured tobacco[J]. Fujian Journal of Agricultural Sciences, 2010, 25(1): 96-99.
    [10]WU Yu-fen, CHEN Yang, ZHAO Yi-jie. Effect of pumpkin stocks on growth,development,yield and quality of grafted muskmelon[J]. Fujian Journal of Agricultural Sciences, 2006, 21(4): 354-359.
  • Cited by

    Periodical cited type(5)

    1. 杨燕,李娜,袁训锋. 界面各向异性对速冻保鲜过程中冰晶生长行为的影响. 食品与发酵科技. 2021(04): 86-90 .
    2. 杨燕,李娜,袁训锋. 速冻保鲜过程中冰晶生长形态研究. 食品与发酵科技. 2020(05): 55-59 .
    3. 杨燕,袁训锋. 强各向异性冰晶生长对速冻食品品质的影响. 食品与发酵科技. 2019(04): 59-65 .
    4. 杨燕,景伟强,袁训锋. 过冷度影响冰晶生长的相场法研究. 低温与超导. 2018(09): 67-71+76 .
    5. 杨燕,袁训锋,乔希民,范娜. 食品速冻保鲜过程冰晶生长的相场模拟. 食品与机械. 2018(12): 108-114 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (557) PDF downloads (57) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return