• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
XIAO F L,LI J,TANG M,et al. Effects of Red to Far-red Light Ratios on Photosynthetic Fluorescence Characteristics and PIFs of Tea Plants under Low Temperature Conditions[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :63−70. DOI: 10.19303/j.issn.1008-0384.2025.01.008
Citation: XIAO F L,LI J,TANG M,et al. Effects of Red to Far-red Light Ratios on Photosynthetic Fluorescence Characteristics and PIFs of Tea Plants under Low Temperature Conditions[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :63−70. DOI: 10.19303/j.issn.1008-0384.2025.01.008

Effects of Red to Far-red Light Ratios on Photosynthetic Fluorescence Characteristics and PIFs of Tea Plants under Low Temperature Conditions

More Information
  • Received Date: August 29, 2024
  • Revised Date: November 05, 2024
  • Available Online: February 25, 2025
  • Objective 

    The physiological and molecular responses of tea plants under different red/far-red light ratio ( R/FR ) light environments under low-temperature conditions were explored to provide theoretical guidance for winter light supplementation in factory light facilities.

    Method 

    ‘Guyuchun’ was used as the material, and far red light treatment (FR, R/FR=4.1) and white light treatment (CK, R/FR=10.4) were set up to study the effects of different R/FR ratio light environments on gas exchange parameters, fluorescence parameters, and the expression of phytochrome interaction factors (PIFs) of tea plants under low-temperature conditions (10 ℃).

    Result 

    The transpiration rate (Tr), net photosynthetic rate (Pn), and electron transport rate (ETR) of tea leaves decreased. The proportion of non-regulated energy dissipation quantum yield Y (NO) increased, the proportion of actual quantum yield (YⅡ) and regulated energy dissipation quantum yield Y (NPQ) decreased, and the important regulator of chlorophyll synthesis CsPIF3a gene was down-regulated.

    Conclusion 

    The low ratio of R/FR light environment under low-temperature conditions weakens the photosynthetic electron transport capacity of tea leaves, inhibited the expression of chlorophyll synthesis related genes, reduces the photosynthetic capacity, and leaves are subjected to light damage.

  • [1]
    WEI C L,YANG H,WANG S B,et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(18) :E4151−E4158.
    [2]
    刘仲华,张盛,刘昌伟,等. 茶叶功能成分利用“十三五” 进展及“十四五” 发展方向[J]. 中国茶叶,2021,43(10) :1−9. DOI: 10.3969/j.issn.1000-3150.2021.10.001

    LIU Z H,ZHANG S,LIU C W,et al. Tea functional ingredients utilization progress during the 13th Five-Year Plan period and development direction in the 14th Five-Year Plan[J]. China Tea,2021,43(10) :1−9. (in Chinese) DOI: 10.3969/j.issn.1000-3150.2021.10.001
    [3]
    欧阳建,周方,卢丹敏,等. 茶多糖调控肥胖作用研究进展[J]. 茶叶科学,2020,40(5) :565−575. DOI: 10.3969/j.issn.1000-369X.2020.05.001

    OUYANG J,ZHOU F,LU D M,et al. Research progress of tea polysaccharides in regulating obesity[J]. Journal of Tea Science,2020,40(5) :565−575. (in Chinese) DOI: 10.3969/j.issn.1000-369X.2020.05.001
    [4]
    王越鹏,耿战辉,郑志强,等. 抹茶研究热点的可视化分析及其功效研究进展[J]. 食品科学,2024,45(23) :367−376. DOI: 10.7506/spkx1002-6630-20240411-102

    WANG Y P,GENG Z H,ZHENG Z Q,et al. Visual analysis of research hotspots in matcha and research progress in its efficacy[J]. Food Science,2024,45(23) :367−376. (in Chinese) DOI: 10.7506/spkx1002-6630-20240411-102
    [5]
    CHANG N,ZHOU Z W,LI Y Y,et al. Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H+-ATPase activity[J]. Plant Physiology and Biochemistry,2022,170:225−233. DOI: 10.1016/j.plaphy.2021.12.008
    [6]
    ZHANG X C,JIANG H G,WAN X C,et al. The effects of different types of mulch on soil properties and tea production and quality[J]. Journal of the Science of Food and Agriculture,2020,100(14) :5292−5300. DOI: 10.1002/jsfa.10580
    [7]
    LIU L L,LIN N,LIU X Y,et al. From chloroplast biogenesis to chlorophyll accumulation:The interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves[J]. Frontiers in Plant Science,2020,11:256. DOI: 10.3389/fpls.2020.00256
    [8]
    ZHANG X C,CHEN K Y,ZHAO Z Y,et al. A novel LED light radiation approach enhances growth in green and albino tea varieties[J]. Plants,2023,12(5) :988. DOI: 10.3390/plants12050988
    [9]
    肖富良,翟秀明,李解,等. 光质调控茶树生长发育与品质形成的研究进展[J]. 激光生物学报,2023,32(2) :111−117. DOI: 10.3969/j.issn.1007-7146.2023.02.002

    XIAO F L,ZHAI X M,LI J,et al. Research progress on the regulation of light quality on the growth development and quality formation of tea plant[J]. Acta Laser Biology Sinica,2023,32(2) :111−117. (in Chinese) DOI: 10.3969/j.issn.1007-7146.2023.02.002
    [10]
    MCCREE K J. The action spectrum,absorptance and quantum yield of photosynthesis in crop plants[J]. Agricultural Meteorology,1971,9:191−216. DOI: 10.1016/0002-1571(71)90022-7
    [11]
    ZHEN S Y,BUGBEE B. Far-red photons have equivalent efficiency to traditional photosynthetic photons:Implications for redefining photosynthetically active radiation[J]. Plant,Cell &;Environment,2020,43(5) :1259–1272.
    [12]
    ZHEN S Y,VAN IERSEL M,BUGBEE B. Why far-red photons should be included in the definition of photosynthetic photons and the measurement of horticultural fixture efficacy[J]. Frontiers in Plant Science,2021,12:693445. DOI: 10.3389/fpls.2021.693445
    [13]
    DEMOTES-MAINARD S,PÉRON T,COROT A,et al. Plant responses to red and far-red lights,applications in horticulture[J]. Environmental and Experimental Botany,2016,121:4−21. DOI: 10.1016/j.envexpbot.2015.05.010
    [14]
    HOLALU S V,FINLAYSON S A. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes[J]. Journal of Experimental Botany,2017,68(5) :943−952.
    [15]
    HAYES S,PANTAZOPOULOU C K,VAN GELDEREN K,et al. Soil salinity limits plant shade avoidance[J]. Current Biology,2019,29(10) :1669–1676. e4.
    [16]
    AHRES M,GIERCZIK K,BOLDIZSÁR Á,et al. Temperature and light-quality-dependent regulation of freezing tolerance in barley[J]. Plants,2020,9(1) :83. DOI: 10.3390/plants9010083
    [17]
    GURURANI M A,VENKATESH J,TRAN L S P. Regulation of photosynthesis during abiotic stress-induced photoinhibition[J]. Molecular Plant,2015,8(9) :1304−1320. DOI: 10.1016/j.molp.2015.05.005
    [18]
    FRANKLIN K A,WHITELAM G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature Genetics,2007,39(11) :1410−1413. DOI: 10.1038/ng.2007.3
    [19]
    江薇,肖宁,陆怡,等. 植物光敏色素作用因子PIFs的生物学功能[J]. 植物生理学报,2014,50(6) :698−706.

    JIANG W,XIAO N,LU Y,et al. Biological function of phytochrome-interacting factors in plant[J]. Plant Physiology Journal,2014,50(6) :698−706. (in Chinese)
    [20]
    JIANG B C,SHI Y T,ZHANG X Y,et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(32) :E6695−E6702.
    [21]
    FRANKLIN K A,LEE S H,PATEL D,et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(50) :20231−20235.
    [22]
    GANGAPPA S N,BERRIRI S,KUMAR S V. PIF4 coordinates thermosensory growth and immunity in Arabidopsis[J]. Current Biology,2017,27(2) :243−249. DOI: 10.1016/j.cub.2016.11.012
    [23]
    ZHANG X N,XIONG L G,LUO Y,et al. Identification,molecular characteristic,and expression analysis of PIFs related to chlorophyll metabolism in tea plant (Camellia sinensis) [J]. International Journal of Molecular Sciences,2021,22(20) :10949. DOI: 10.3390/ijms222010949
    [24]
    王加真,金星,熊云梅,等. 红蓝LED光照强度对茶树生长及生物化学成分的影响[J]. 分子植物育种,2020,18(5) :1656−1660.

    WANG J Z,JIN X,XIONG Y M,et al. Effects of red-blue LED light intensity on growth and biochemical components of tea plants[J]. Molecular Plant Breeding,2020,18(5) :1656−1660. (in Chinese)
    [25]
    莫晓丽,周子维,把熠晨,等. 茶树光敏色素基因家族成员的生物信息学及其表达量与黄酮含量的相关性分析[J]. 南方农业学报,2019,50(6) :1173−1182. DOI: 10.3969/j.issn.2095-1191.2019.06.03

    MO X L,ZHOU Z W,BA Y C,et al. Bioinformatics of phytochrome gene family members of tea,its expression and correlation with flavonoid content[J]. Journal of Southern Agriculture,2019,50(6) :1173−1182. (in Chinese) DOI: 10.3969/j.issn.2095-1191.2019.06.03
    [26]
    YANG F,LIU Q L,CHENG Y J,et al. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity[J]. BMC Plant Biology,2020,20(1) :148. DOI: 10.1186/s12870-020-02352-0
    [27]
    FRANKLIN K A. Shade avoidance[J]. New Phytologist,2008,179(4) :930−944. DOI: 10.1111/j.1469-8137.2008.02507.x
    [28]
    SMITH H,WHITELAM G C. The shade avoidance syndrome:Multiple responses mediated by multiple phytochromes[J]. Plant,Cell &Environment,1997,20(6) :840–844.
    [29]
    HALLIDAY K J,KOORNNEEF M,WHITELAM G C. Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio[J]. Plant Physiology,1994,104(4) :1311−1315. DOI: 10.1104/pp.104.4.1311
    [30]
    FANKHAUSER C,BATSCHAUER A. Shadow on the plant:A strategy to exit[J]. Cell,2016,164(1/2) :15−17.
    [31]
    李源源,吴翠南,吴雪,等. 植物工厂红光与远红光配比对生菜产量和品质的影响[J]. 西北农林科技大学学报(自然科学版) ,2024,52(11) :73−83.

    LI Y Y,WU C N,WU X,et al. Effects of red light to far-red light ratio on yield and quality of lettuce in a plant factory[J]. Journal of Northwest A & F University (Natural Science Edition) ,2024,52(11) :73−83. (in Chinese)
    [32]
    孟力力,曹凯,孙倩,等. 不同红光远红光配比对冰草生长发育、光合特性及品质的影响[J]. 核农学报,2022,36(1) :226−235. DOI: 10.11869/j.issn.100-8551.2020.01.0226

    MENG L L,CAO K,SUN Q,et al. Effects of different ratios of red light and far red light on growth,photosynthetic characteristics and quality of Mesembryanthemum crystallinum L[J]. Journal of Nuclear Agricultural Sciences,2022,36(1) :226−235. (in Chinese) DOI: 10.11869/j.issn.100-8551.2020.01.0226
    [33]
    艾楷棋,苏华,周海将,等. 不同红光与远红光对盐胁迫下番茄叶绿素合成的影响[J]. 北方园艺,2019(1) :14−22. DOI: 10.11937/bfyy.20181267

    AI K Q,SU H,ZHOU H J,et al. Effects of different R:FR ratio on chlorophyll biosynthesis in tomato leaves under salt stress[J]. Northern Horticulture,2019(1) :14−22. (in Chinese) DOI: 10.11937/bfyy.20181267
    [34]
    ZHEN S Y,VAN IERSEL M W. Far-red light is needed for efficient photochemistry and photosynthesis[J]. Journal of Plant Physiology,2017,209:115−122. DOI: 10.1016/j.jplph.2016.12.004
    [35]
    TAN T T,LI S L,FAN Y F,et al. Far-red light:A regulator of plant morphology and photosynthetic capacity[J]. The Crop Journal,2021,10(2) :300−309.
    [36]
    邹洁. 远红光对植物工厂生菜生长和品质生理的影响及其应用策略研究[D]. 北京:中国农业科学院,2022.

    ZOU J. Effects of far-red light on growth,quality and physiology of lettuce in plant factory and its application strategy[D]. Beijing:Chinese Academy of Agricultural Sciences,2022. (in Chinese)
    [37]
    STUEFER J F,HUBER H. Differential effects of light quantity and spectral light quality on growth,morphology and development of two stoloniferous Potentilla species[J]. Oecologia,1998,117(1/2) :1−8.
    [38]
    ZIENKIEWICZ M,DROŻAK A,WASILEWSKA W,et al. The short-term response of Arabidopsis thaliana (C3) and Zea mays (C4) chloroplasts to red and far red light[J]. Planta,2015,242(6) :1479−1493. DOI: 10.1007/s00425-015-2392-3
    [39]
    鲁兆宏,谭婷婷,滕一鸣,等. 大豆和花生表型及光合特性对荫蔽的响应[J]. 浙江大学学报(农业与生命科学版) ,2023,49(4) :526−534.

    LU Z H,TAN T T,TENG Y M,et al. Phenotypes and photosynthetic characteristics of soybeans and peanuts in response to shading[J]. Journal of Zhejiang University (Agriculture and Life Sciences) ,2023,49(4) :526−534. (in Chinese)
    [40]
    YANG F,FENG L Y,LIU Q L,et al. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition[J]. Environmental and Experimental Botany,2018,150:79−87. DOI: 10.1016/j.envexpbot.2018.03.008
    [41]
    邸秀茹,焦学磊,崔瑾,等. 新型光源LED辐射的不同光质配比光对菊花组培苗生长的影响[J]. 植物生理学通讯,2008,44(4) :661−664.

    DI X R,JIAO X L,CUI J,et al. Effects of different light quality ratios of LED on growth of Chrysanthemum plantlets in vitro[J]. Plant Physiology Communications,2008,44(4) :661−664. (in Chinese)
    [42]
    韦宝,宋朝玉,王圣健,等. 施氮时期和R/FR比值对玉米生长生理性状和产量的影响[J]. 中国农学通报,2018,34(3) :10−18. DOI: 10.11924/j.issn.1000-6850.casb17010003

    WEI B,SONG C Y,WANG S J,et al. Nitrogen application time and R/FR ratio:Effect on growth physiological characters and yield of maize[J]. Chinese Agricultural Science Bulletin,2018,34(3) :10−18. (in Chinese) DOI: 10.11924/j.issn.1000-6850.casb17010003
    [43]
    李雪,赵士文,张冠智,等. 添加不同强度的远红光对黄瓜幼苗生长及光合作用的影响[J]. 中国农业大学学报,2024,29(2) :66−76. DOI: 10.11841/j.issn.1007-4333.2024.02.07

    LI X,ZHAO S W,ZHANG G Z,et al. Effects of adding different intensities of far-red light on the growth and photosynthesis of cucumber seedlings[J]. Journal of China Agricultural University,2024,29(2) :66−76. (in Chinese) DOI: 10.11841/j.issn.1007-4333.2024.02.07
    [44]
    金彦君,祝洪沙,王金禹,等. 不同光质对马铃薯生长及光合特性的影响[J]. 甘肃农业大学学报,2024,59(2) :45−53.

    JIN Y J,ZHU H S,WANG J Y,et al. Effects of different light qualities on the growth and photosynthetic properties of potatoes[J]. Journal of Gansu Agricultural University,2024,59(2) :45−53. (in Chinese)
    [45]
    EVANS J R,POORTER H. Photosynthetic acclimation of plants to growth irradiance:The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant,Cell &Environment,2001,24(8) :755–767.
    [46]
    GE S B,WANG Y M,SHEN K Y,et al. Effects of differential shading on summer tea quality and tea garden microenvironment[J]. Plants,2024,13(2) :202. DOI: 10.3390/plants13020202
    [47]
    杨再强,张静,江晓东,等. 不同R:FR值对菊花叶片气孔特征和气孔导度的影响[J]. 生态学报,2012,32(7) :2135−2141. DOI: 10.5846/stxb201106240942

    YANG Z Q,ZHANG J,JIANG X D,et al. The effect of red:Far red ratio on the stomata characters and stomata conductance of Chrysanthemum leaves[J]. Acta Ecologica Sinica,2012,32(7) :2135−2141. (in Chinese) DOI: 10.5846/stxb201106240942
  • Related Articles

    [1]ZHOU Yanfang, WANG Xiuzhi, ZHANG Xiaomei, LUO Xiangwen, LIU Zehong, CUI Congcong, MENG Lingqiang, SUN Junling. Identification and Genetic Evolution of Viruses Infecting Chili Peppers at Chifeng, Inner Mongolia[J]. Fujian Journal of Agricultural Sciences, 2024, 39(7): 819-825. DOI: 10.19303/j.issn.1008-0384.2024.07.009
    [2]WANG Mengge, HUANG Yu, FU Qiuling, CHENG Longfei, WAN Chunhe, LIU Rongchang, CHEN Hongmei, JIANG Nansong, LIANG Qizhang, SHI Shaohua, LIN Jiansheng, FU Guanghua. Establishment of a Triple-primer Multiplex PCR Assay for Discriminative Detection of Duck and Goose Circoviruses[J]. Fujian Journal of Agricultural Sciences, 2023, 38(1): 7-11. DOI: 10.19303/j.issn.1008-0384.2023.01.002
    [3]ZHENG Nen-zhu, ZHANG Lin-li, LI Li, XIN Qing-wu, MIAO Zhong-wei, ZHU Zhi-ming, HUANG Yi-fan. Expression of Cu/Zn-SOD Gene and Activity of Cu/Zn-SOD Enzyme in Mule Duck Tissues[J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 933-938. DOI: 10.19303/j.issn.1008-0384.2019.08.010
    [4]WU Xiao-mei, YE Mei-feng, WU Fei-long, LIN Dai-yan. Cu and Zn Accumulations in Myriophyllum spicatum for Purification of Pig Farm Biogas Slurry[J]. Fujian Journal of Agricultural Sciences, 2018, 33(11): 1195-1200. DOI: 10.19303/j.issn.1008-0384.2018.11.013
    [5]Li-bin HE, Fang CHEN, Zhi-huang ZHU, Min-ning MA, He-chang ZHANG, Sun-long WU, Chen ZHOU. Molecular Phylogeny Determined by Mitochondrial Genes 16S rRNA, COX1 and Cytb of Eleven Anemonefish Species[J]. Fujian Journal of Agricultural Sciences, 2018, 33(3): 230-235. DOI: 10.19303/j.issn.1008-0384.2018.03.003
    [6]WANG Cui, XIE Bao-gui, CHEN Liang-jun, KE Ting, KE Huo-zhao. SCAR Molecular Identification of 30 Flammulina velutipes[J]. Fujian Journal of Agricultural Sciences, 2013, 28(10): 966-970. DOI: 10.19303/j.issn.1008-0384.2013.10.007
    [7]WANG Xiao-min, HE Kong-wang, WANG Dong-tian, ZHOU Zhong-tao, MAO Ai-hua, YU Zheng-yu, WANG Wei, NI Yan-xiu, WEN Li-bin. Investigation on Epidemiology of Co-infection of PCV2,P1 and TTV[J]. Fujian Journal of Agricultural Sciences, 2013, 28(9): 864-868. DOI: 10.19303/j.issn.1008-0384.2013.09.006
    [8]WANG Shao, CHENG Xiao-xia, CHEN Shao-ying, ZHU Xiao-li, CHEN Shi-long, LIN Feng-qiang, LI Zhao-long. Molecular Characteristics Analysis of D-strain Vaccine Virus of Muscovy Duck-origin Goose Parvovirus NS Protein Epitopes[J]. Fujian Journal of Agricultural Sciences, 2013, 28(4): 301-308. DOI: 10.19303/j.issn.1008-0384.2013.04.001
    [9]CHE Yong-liang, SHI Yun-tong, ZHUANG Xiang-sheng, CHEN Shao-ying, WANG Long-bai, WEI Hong, CHEN Ru-jing, WU Xue-min, ZHOU Lun-jiang. Effect of Porcine circovirus Type 2 ORF2 Gene Expression in PcDNA3.1 for Vacination[J]. Fujian Journal of Agricultural Sciences, 2011, 26(2): 166-169.
    [10]WAN Chun-he, SHI Shao-hua, CHENG Long-fei, FU Guang-hua, CHEN Hong-mei, HUANG Yu. Nested PCR detection and sequence analysis on Zhejiang duck circovirus[J]. Fujian Journal of Agricultural Sciences, 2009, 24(5): 390-395.

Catalog

    Article Metrics

    Article views (9) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return