• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
MAO L Y, HUANG Q W, YU Y P, et al. Distribution and Properties of SSR in Transcriptome of Nymphaea Paul Stetson Flowers [J]. Fujian Journal of Agricultural Sciences,2024,39(7):775−784 doi: 10.19303/j.issn.1008-0384.2024.07.004
Citation: MAO L Y, HUANG Q W, YU Y P, et al. Distribution and Properties of SSR in Transcriptome of Nymphaea Paul Stetson Flowers [J]. Fujian Journal of Agricultural Sciences,2024,39(7):775−784 doi: 10.19303/j.issn.1008-0384.2024.07.004

Distribution and Properties of SSR in Transcriptome of Nymphaea Paul Stetson Flowers

doi: 10.19303/j.issn.1008-0384.2024.07.004
  • Received Date: 2024-01-22
  • Rev Recd Date: 2024-05-29
  • Available Online: 2024-08-15
  • Publish Date: 2024-07-28
  •   Objective   SSRs in the transcriptome of Nymphaea Paul Stetson flowers were studied to generate new markers for evaluating germplasms and facilitating breeding of tropical waterlilies.   Method   SSR loci were retrieved from the transcriptomes of floral pistils, stamens, and petals of Nymphaea Paul Stetson using MISA. Characteristics of the loci were analyzed by Excel, and primers designed by Primer 3.0 and screened by TP-M13-SSR PCR.   Result   There were 12365 SSR loci found in the 39079 unigenes of the transcriptome at the frequency of 31.64% averaging one SSR locus per 5.79 kb. Most of the SSR loci had dinucleotide repeat motifs comprising 71.85% of total with AG/CT being the dominant unit that made up 61.34% of the motifs. Trinucleotide repeat motifs accounted for 26.10% of the sites with AAG/CTT being dominant at 8.30%. The repeating frequency was 5–20 times with a sequence of 12–30 bp averaging 18.38 bp long. Of the 9212 pairs of primers designed, 100 were randomly selected for a validation by PCR amplification to arrive at 9 pairs with high polymorphism being used as the markers. Subsequently, the 12 germplasms were clustered into 3 branches under a genetic similarity coefficient of 0.7375.   Conclusion  The SSR loci in the Nymphaea Paul Stetson transcriptome were high on distribution frequency, rich in diversity, greatly polymorphic, and desirable for applications. The 9 pairs of SSR primers identified in this study extended the existing marker repertoire facilitating effective germplasm differentiation on waterlilies.
  • loading
  • [1]
    李淑娟, 尉倩, 陈尘, 等. 中国睡莲属植物育种研究进展 [J]. 植物遗传资源学报, 2019, 20(4):829−835.

    LI S J, YU Q, CHEN C, et al. Breeding progress of waterlilies in China [J]. Journal of Plant Genetic Resources, 2019, 20(4): 829−835. (in Chinese)
    [2]
    毛立彦, 龙凌云, 黄秋伟, 等. 基于SRAP分子标记的147份睡莲属植物遗传多样性分析 [J]. 南方农业学报, 2023, 54(2):454−466.

    MAO L Y, LONG L Y, HUANG Q W, et al. Genetic diversity analysis of 147 Nymphaea Linn. plants based on SRAP molecular marker [J]. Journal of Southern Agriculture, 2023, 54(2): 454−466. (in Chinese)
    [3]
    KALIA R K, RAI M K, KALIA S, et al. Microsatellite markers: An overview of the recent progress in plants [J]. Euphytica, 2011, 177(3): 309−334. doi: 10.1007/s10681-010-0286-9
    [4]
    苏群, 杨亚涵, 田敏, 等. 睡莲种质资源遗传多样性分析及DNA指纹图谱构建 [J]. 热带作物学报, 2020, 41(2):258−266.

    SU Q, YANG Y H, TIAN M, et al. Genetic diversity analysis and DNA fingerprinting construction of waterlily germplasm resources [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 258−266. (in Chinese)
    [5]
    POCZAI P, MÁTYÁS K K, SZABÓ I, et al. Genetic variability of thermal Nymphaea (Nymphaeaceae) populations based on ISSR markers: Implications on relationships, hybridization, and conservation [J]. Plant Molecular Biology Reporter, 2011, 29(4): 906−918. doi: 10.1007/s11105-011-0302-9
    [6]
    苏群, 王虹妍, 卢家仕, 等. 睡莲的SSR引物对及合成方法和应用: CN113832254A[P]. 2021-12-24.
    [7]
    PARVEEN S, SINGH N, ADIT A, et al. Contrasting reproductive strategies of two Nymphaea species affect existing natural genetic diversity as assessed by microsatellite markers: Implications for conservation and wetlands restoration [J]. Frontiers in Plant Science, 2022, 13: 773572. doi: 10.3389/fpls.2022.773572
    [8]
    QIAN Z H, MUNYWOKI J M, WANG Q F, et al. Molecular identification of African Nymphaea species (water lily) based on ITS, trnT-trnF and rpl16 [J]. Plants, 2022, 11(18): 2431. doi: 10.3390/plants11182431
    [9]
    LIU G, XIE Y J, ZHANG D Q, et al. Analysis of SSR loci and development of SSR primers in Eucalyptus [J]. Journal of Forestry Research, 2018, 29(2): 273−282. doi: 10.1007/s11676-017-0434-3
    [10]
    OLIVEIRA DE OLIVEIRA L, CARLOS BEISE D, DAMIAN DOS SANTOS D, et al. Molecular markers in Carya illinoinensis (Juglandaceae): From genetic characterization to molecular breeding [J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(5): 560−569. doi: 10.1080/14620316.2021.1892534
    [11]
    JIANG M, YAN S, REN W C, et al. Genetic diversity of the Chinese medicinal plant Astragali Radix based on transcriptome-derived SSR markers [J]. Electronic Journal of Biotechnology, 2023, 62: 13−20. doi: 10.1016/j.ejbt.2022.12.001
    [12]
    SHI Z Y, ZHAO W Q, LI Z A, et al. Development and validation of SSR markers related to flower color based on full-length transcriptome sequencing in Chrysanthemum [J]. Scientific Reports, 2022, 12(1): 22310. doi: 10.1038/s41598-022-26664-3
    [13]
    叶鹏, 李显煌, 唐军荣, 等. 云南金花茶转录组SSR的分布及其序列特征 [J]. 中南林业科技大学学报, 2019, 39(9):86−91.

    YE P, LI X H, TANG J R, et al. Distribution and characteristics of SSR in transcriptome of Camellia fascicularis [J]. Journal of Central South University of Forestry & Technology, 2019, 39(9): 86−91. (in Chinese)
    [14]
    辛静, 辛雅萱, 董章宏, 等. 云南火焰兰转录组SSR分布及其序列特征分析 [J]. 南方农业学报, 2020, 51(7):1634−1641.

    XIN J, XIN Y X, DONG Z H, et al. Distribution and sequence characteristics of SSR in transcriptome of Renanthera imschootiana Rolfe [J]. Journal of Southern Agriculture, 2020, 51(7): 1634−1641. (in Chinese)
    [15]
    ZHANG L S, YANG X N, QI X N, et al. Characterizing the transcriptome and microsatellite markers for almond (Amygdalus communis L. ) using the Illumina sequencing platform [J]. Hereditas, 2017, 155: 14.
    [16]
    JIANG B, XIE D S, LIU W R, et al. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida) [J]. PLoS One, 2013, 8(8): e71054. doi: 10.1371/journal.pone.0071054
    [17]
    TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L. ): Frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Research, 2001, 11(8): 1441−1452. doi: 10.1101/gr.184001
    [18]
    梁燕, 韩传明, 孙超, 等. 基于SSR标记的核桃种质资源遗传多样性与遗传结构分析 [J]. 北方园艺, 2022, (9):47−54.

    LIANG Y, HAN C M, SUN C, et al. Genetic diversity and genetic structure analysis of walnut germplasm resources based on SSR markers [J]. Northern Horticulture, 2022(9): 47−54. (in Chinese)
    [19]
    CRISTANCHO M, ESCOBAR C. Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix [J]. Genetics and Molecular Research: GMR, 2008, 7(4): 1186−1192. doi: 10.4238/vol7-4gmr493
    [20]
    苏群, 田敏, 刘俊, 等. 基于生物信息学的睡莲SSR位点特征分析 [J]. 西南农业学报, 2021, 34(10):2076−2083.

    SU Q, TIAN M, LIU J, et al. SSR loci characteristic analysis of water lily based on bio-informatics methodology [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2076−2083. (in Chinese)
    [21]
    张华丽, 丛日晨, 王茂良, 等. 基于万寿菊转录组测序的SSR标记开发 [J]. 园艺学报, 2018, 45(1):159−167.

    ZHANG H L, CONG R C, WANG M L, et al. Development of SSR molecular markers based on transcriptome sequencing of Tagetes erecta [J]. Acta Horticulturae Sinica, 2018, 45(1): 159−167. (in Chinese)
    [22]
    杜晓华, 杨雅萍, 朱小佩, 等. 三色堇转录组SSR分析及分子标记开发 [J]. 园艺学报, 2019, 46(4):797−806.

    DU X H, YANG Y P, ZHU X P, et al. Development of genic-SSR markers by transcriptome sequencing in Viola × wittrockiana [J]. Acta Horticulturae Sinica, 2019, 46(4): 797−806. (in Chinese)
    [23]
    郭聪, 陈燕, 王莹, 等. 美国红枫转录组SSR序列分析 [J]. 中南林业科技大学学报, 2021, 41(7):132−141.

    GUO C, CHEN Y, WANG Y, et al. Sequence analysis of SSR in transcriptome of American red maple [J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 132−141. (in Chinese)
    [24]
    张震, 许彦明, 陈永忠, 等. 油茶转录组测序与SSR特征分析 [J]. 西南林业大学学报, 2018, 38(6):63−68.

    ZHANG Z, XU Y M, CHEN Y Z, et al. Transcriptome sequencing and analysis of SSR characteristics of Camellia oleifera [J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(6): 63−68. (in Chinese)
    [25]
    李娜, 姚民, 梅兰菊, 等. 基于山桐子转录组序列的SSR分子标记开发 [J]. 应用与环境生物学报, 2017, 23(5):952−958.

    LI N, YAO M, MEI L J, et al. Development of SSR molecular markers based on transcriptome sequencing of Idesia polycarpa Maxim [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(5): 952−958. (in Chinese)
    [26]
    VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants: Features and applications [J]. Trends in Biotechnology, 2005, 23(1): 48−55. doi: 10.1016/j.tibtech.2004.11.005
    [27]
    YANG Q W, JIANG Y J, WANG Y P, et al. SSR loci analysis in transcriptome and molecular marker development in Polygonatum sibiricum [J]. BioMed Research International, 2022, 2022: 4237913.
    [28]
    杨彬, 许蔷薇, 牛明月, 等. 云锦杜鹃转录组SSR分析及其分子标记开发 [J]. 核农学报, 2018, 32(12):2335−2345.

    YANG B, XU Q W, NIU M Y, et al. Analysis of SSR information in transcriptome and development of SSR molecular markers in Rhododendron fortunei [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2335−2345. (in Chinese)
    [29]
    郭俊, 朱婕, 谢尚潜, 等. 油梨转录组SSR分子标记开发与种质资源亲缘关系分析 [J]. 园艺学报, 2020, 47(8):1552−1564.

    GUO J, ZHU J, XIE S Q, et al. Development of SSR molecular markers based on transcriptome and analysis of genetic relationship of germplasm resources in avocado [J]. Acta Horticulturae Sinica, 2020, 47(8): 1552−1564. (in Chinese)
    [30]
    蔡金峰, 杨晓明, 郁万文, 等. 基于苦楝转录组测序的SSR分子标记开发 [J]. 林业科学, 2021, 57(6):85−92.

    CAI J F, YANG X M, YU W W, et al. Development of SSR molecular markers based on transcriptome sequencing of Melia azedarach [J]. Scientia Silvae Sinicae, 2021, 57(6): 85−92. (in Chinese)
    [31]
    郝广婧, 祁银燕, 张得芳, 等. 基于转录组的黑果枸杞SSR分布特征分析及引物设计 [J]. 分子植物育种, 2019, 17(13):4342−4350.

    HAO G J, QI Y Y, ZHANG D F, et al. Analysis of SSR distribution characteristics and primer design of Lycium ruthenicum Murr. based on transcriptome [J]. Molecular Plant Breeding, 2019, 17(13): 4342−4350. (in Chinese)
    [32]
    HARR B, SCHLÖTTERER C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation [J]. Genetics, 2000, 155(3): 1213−1220. doi: 10.1093/genetics/155.3.1213
    [33]
    ZHANG L S, CHEN F, ZHANG X T, et al. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788): 79−84. doi: 10.1038/s41586-019-1852-5
    [34]
    刘思思, 乔中全, 曾慧杰, 等. 灰毡毛忍冬转录组SSR位点分析及EST-SSR标记开发 [J]. 分子植物育种, 2021, 19(9):3015−3021.

    LIU S S, QIAO Z Q, ZENG H J, et al. Analysis on SSR loci in transcriptome and development of EST-SSR molecular markers in Lonicera macranthoides [J]. Molecular Plant Breeding, 2021, 19(9): 3015−3021. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (47) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return