• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
WU X M, YE M F, YU J Y, et al. Accumulation, subcellular distribution, and chemical forms of zinc in Myriophyllum spicatum L. [J]. Fujian Journal of Agricultural Sciences,2025,X(X):1−11.
Citation: WU X M, YE M F, YU J Y, et al. Accumulation, subcellular distribution, and chemical forms of zinc in Myriophyllum spicatum L. [J]. Fujian Journal of Agricultural Sciences,2025,X(X):1−11.

Accumulation, subcellular distribution, and chemical forms of zinc in Myriophyllum spicatum L.

More Information
  • Received Date: August 26, 2024
  • Revised Date: November 06, 2024
  • Available Online: March 09, 2025
  • Objective 

    To explore the enrichment and distribution characteristics of zinc in the body of Myriophyllum spicatum L.,

    Method 

    a hydroponic experiments was conducted to investigate its biomass, height, leaf epidermal cell variation and antioxidant enzyme activities. The subcellular distribution and chemical form of Zn in roots, stems and leaves were further analyzed.

    Result 

    The results showed that M. spicatum can survive under different concentrations of Zn treatments. At a zinc concentration of 50 mg·L−1, both plant height and biomass significantly increased by 22.87% and 10.06%, respectively, compared to the control group, while there was no significant difference in chlorophyll content and MDA content in roots and leaves compared to the control. However, the SOD activity in roots and leaves was significantly higher than that of the control. Under a zinc concentration of 200 mg·L−1, there was no significant difference in the plant height and biomass of M. spicatum compared to the control. However, the chlorophyll content was significantly lower than that of the control treatment. Additionally, the roots and leaves exhibited significantly higher MDA content and SOD activity than the control. The leaf epidermal cells of M. spicatum exhibited partial damage. After Zn treatment, the Zn contents in the roots, stems and leaves of M. spicatum were 55.48~242.44, 14.78~31.02 mg·kg−1 and 18.01~69.79 mg·kg−1, respectively. The zinc contents in various organs of Z1 and Z2 treatments were significantly higher than those of the control, and the zinc content in the roots was significantly higher than that in the leaves and stems. The subcellular distribution of Zn in M. spicatum is mainly located in the cell wall parts of leaves and stems, accounting for 32.56%~49.50% and 41.21%~43.52%, respectively. Under exogenous Zn treatment, the Zn in the roots of M. spicatum was mainly present in soluble fractions, comprising 32.10%~50.48% of the total. The Zn existed in NaCl-, HAc-, and HCl-extracted forms in leaves and stems of M. spicatum accounting for 77.00%~86.00% and 81.00%~86.38%, respectively.And Zn mainly existed in water and NaCl-extracted forms in roots, accounting for 59.71%~63.65%.

    Conclusion 

    Therefore, M. spicatum is a plant with better Zn accumulation, with roots having a stronger capacity than stems and leaves. The main resistance mechanism underlying Zn accumulation and tolerance in M. spicatum might involve cell wall retention, vacuoles segregation (soluble components) and the presence of Zn in various low-reactivity forms.

  • [1]
    KASPRZYK A, KILAR J, CHWIL S, et al. Content of selected macro- and microelements in the liver of free-living wild boars (Sus scrofa L. ) from agricultural areas and health risks associated with consumption of liver [J]. Animals, 2020, 10(9): 1519. DOI: 10.3390/ani10091519
    [2]
    李广鑫, 赵鹏, 睢福庆, 等. 螯合–缓冲营养液培养条件下添加外源锌对小麦幼苗生长和TaZIPs基因表达的影响 [J]. 植物营养与肥料学报, 2022, 28(3):470−481. DOI: 10.11674/zwyf.2021384

    LI G X, ZHAO P, SUI F Q, et al. Effects of exogenous zinc supplementation on growth and TaZIPs gene expression in wheat under chelation-buffer nutrient solution culture [J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 470−481. (in Chinese) DOI: 10.11674/zwyf.2021384
    [3]
    王瑾. 饲料添加剂在土壤和蔬菜中的迁移及残留研究[D]. 杭州: 浙江工商大学, 2009.

    WANG J. Study on transfer and residue of feed additives in soil and vegetables [D]. Hangzhou: Zhejiang Gongshang University, 2009. (in Chinese)
    [4]
    许俊香, 邹国元, 孙钦平, 等. 畜禽粪便Cu、Zn含量特征研究 [J]. 江苏农业科学, 2024, 52(11):254−259.

    XU J X, ZOU G Y, SUN Q P, et al. Study on characteristics of Cu and Zn contents in livestock and poultry manure [J]. Jiangsu Agricultural Sciences, 2024, 52(11): 254−259. (in Chinese)
    [5]
    朱建春, 张增强, 樊志民, 等. 中国畜禽粪便的能源潜力与氮磷耕地负荷及总量控制 [J]. 农业环境科学学报, 2014, 33(3):435−445. DOI: 10.11654/jaes.2014.03.005

    ZHU J C, ZHANG Z Q, FAN Z M, et al. Biogas potential, cropland load and total amount control of animal manure in China [J]. Journal of Agro-Environment Science, 2014, 33(3): 435−445. (in Chinese) DOI: 10.11654/jaes.2014.03.005
    [6]
    袁凯, 熊苏雅, 梁静, 等. 畜禽粪便中铜和锌污染现状及风险分析 [J]. 农业环境科学学报, 2020, 39(8):1837−1842. DOI: 10.11654/jaes.2020-0142

    YUAN K, XIONG S Y, LIANG J, et al. Status and risk analysis of copper and zinc pollution in livestock manure [J]. Journal of Agro-Environment Science, 2020, 39(8): 1837−1842. (in Chinese) DOI: 10.11654/jaes.2020-0142
    [7]
    梁雅雅, 易筱筠, 党志, 等. 某铅锌尾矿库周边农田土壤重金属污染状况及风险评价 [J]. 农业环境科学学报, 2019, 38(1):103−110. DOI: 10.11654/jaes.2018-0252

    LIANG Y Y, YI X Y, DANG Z, et al. Pollution and risk assessment of heavy metals in agricultural soils around a Pb-Zn tailing pond [J]. Journal of Agro-Environment Science, 2019, 38(1): 103−110. (in Chinese) DOI: 10.11654/jaes.2018-0252
    [8]
    赵晓东, 谢英荷, 李廷亮, 等. 植物对污灌区土壤锌形态的影响 [J]. 应用与环境生物学报, 2015, 21(3):477−482.

    ZHAO X D, XIE Y H, LI T L, et al. Effects of plants on forms of zinc in sewage irrigated soil [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 477−482. (in Chinese)
    [9]
    CHANDRASEKHAR C, RAY J G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate [J]. Ecotoxicology and Environmental Safety, 2019, 171: 26−36. DOI: 10.1016/j.ecoenv.2018.12.058
    [10]
    JIANG M Y, LIU S L, LI Y F, et al. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos [J]. Ecotoxicology and Environmental Safety, 2019, 170: 502−512. DOI: 10.1016/j.ecoenv.2018.12.020
    [11]
    何芳芳, 陈雅顺, 张德刚, 等. 六种观赏型水生植物对水体中铜、锌、铅的净化研究 [J]. 湖北农业科学, 2016, 55(2):327−328,332.

    HE F F, CHEN Y S, ZHANG D G, et al. Reaserch on phytoremediation of Cu, Zn, Pb contaminated water by six macrophytes [J]. Hubei Agricultural Sciences, 2016, 55(2): 327−328,332. (in Chinese)
    [12]
    郭超超. 水生植物组合对重金属富集能力和积累特征研究[D]. 郑州: 河南农业大学, 2024.

    GUO C C. Research on the enrichment capability and accumulation characteristics of aquatic plant assemblages for heavy metals [D]. Zhengzhou: Henan Agricultural University, 2024. (in Chinese)
    [13]
    慕凯, 罗明良. 三里七湖水生植物重金属富集作用研究 [J]. 生态科学, 2017, 36(3):82−89.

    MU K, LUO M L. Heavy metals enrichment of aquatic plants in Sanliqi Lake, Huangshi City of Hubei Province [J]. Ecological Science, 2017, 36(3): 82−89. (in Chinese)
    [14]
    邢丹, 刘鸿雁, 于萍萍, 等. 黔西北铅锌矿区植物群落分布及其对重金属的迁移特征 [J]. 生态学报, 2012, 32(3):796−804. DOI: 10.5846/stxb201106220925

    XING D, LIU H Y, YU P P, et al. The plant community distribution and migration characteristics of heavy metals in tolerance dominant species in lead/zinc mine areas in Northwestern Guizhou Province [J]. Acta Ecologica Sinica, 2012, 32(3): 796−804. (in Chinese) DOI: 10.5846/stxb201106220925
    [15]
    XU Q S, CHU W Y, QIU H, et al. Responses of Hydrilla verticillata (l. f.) royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications [J]. Plant Physiology and Biochemistry, 2013, 69: 43−48. DOI: 10.1016/j.plaphy.2013.04.018
    [16]
    李冬香, 陈清西. 锌在再力花体内的富集性及亚细胞分布和化学形态研究 [J]. 中国生态农业学报, 2013, 21(9):1114−1118. DOI: 10.3724/SP.J.1011.2013.01114

    LI D X, CHEN Q X. Determinating zinc accumulation, sub-cellular distribution and chemical forms of Thalia dealbata Fraser [J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1114−1118. (in Chinese) DOI: 10.3724/SP.J.1011.2013.01114
    [17]
    赵玉红, 敬久旺, 王向涛, 等. 藏中矿区先锋植物重金属积累特征及耐性研究 [J]. 草地学报, 2016, 24(3):598−603.

    ZHAO Y H, JING J W, WANG X T, et al. Study on heavy metals bioaccumulation characteristics and tolerance of pioneer plants from central Tibet mining area [J]. Acta Agrestia Sinica, 2016, 24(3): 598−603. (in Chinese)
    [18]
    朱光旭, 肖化云, 郭庆军, 等. 铅锌尾矿污染区3种菊科植物体内重金属的亚细胞分布和化学形态特征 [J]. 环境科学, 2017, 38(7):3054−3060.

    ZHU G X, XIAO H Y, GUO Q J, et al. Subcellular distribution and chemical forms of heavy metals in three types of Compositae plants from lead-zinc tailings area [J]. Environmental Science, 2017, 38(7): 3054−3060. (in Chinese)
    [19]
    吴箐, 杜锁军, 曾晓雯, 等. 锌在长柔毛委陵菜细胞内的分布和化学形态研究 [J]. 生态环境, 2006, 15(1):40−44.

    WU Q, DU S J, ZENG X W, et al. Subcellular distribution and chemical forms of Potentilla grifithii Hook [J]. Ecology and Environment, 2006, 15(1): 40−44. (in Chinese)
    [20]
    高海荣, 陈秀丽, 赵爱娟, 等. 5种沉水植物对重金属富集能力的对比研究 [J]. 环境保护科学, 2016, 42(4):101−105.

    GAO H R, CHEN X L, ZHAO A J, et al. Comparison of heavy metal accumulation by five submerged macrophytes [J]. Environmental Protection Science, 2016, 42(4): 101−105. (in Chinese)
    [21]
    吴晓梅, 叶美锋, 吴飞龙, 等. 狐尾藻对生猪养殖场沼液Cu、Zn的富集与净化效果[J]. 福建农业学报, 2018, 33(11): 1195-1200.

    WU X M, YE M F, WU F L, et al. Cu and Zn Accumulations in Myriophyllum spicatum L. for purification of pig farm biogas slurry[J]. Fujian Journal of Agricultural Sciences, 2018, 33(11): 1195-1200. (in Chinese)
    [22]
    吴晓梅, 叶美锋, 吴飞龙, 等. 沉水植物对生猪养殖场沼液废水的净化效果研究 [J]. 中国沼气, 2020, 38(6):44−49. DOI: 10.3969/j.issn.1000-1166.2020.06.007

    WU X M, YE M F, WU F L, et al. Purification effect of submerged macrophytes on biogas slurry wastewater from pig farm [J]. China Biogas, 2020, 38(6): 44−49. (in Chinese) DOI: 10.3969/j.issn.1000-1166.2020.06.007
    [23]
    吴晓梅, 叶美锋, 吴飞龙, 等. 狐尾藻净化生猪养殖场沼液的研究 [J]. 农业环境科学学报, 2018, 37(4):796−803. DOI: 10.11654/jaes.2017-1188

    WU X M, YE M F, WU F L, et al. Purification capacity of Myriophyllum spicatum for biogas slurry from pig farms [J]. Journal of Agro-Environment Science, 2018, 37(4): 796−803. (in Chinese) DOI: 10.11654/jaes.2017-1188
    [24]
    昌梦雨, 魏晓楠, 王秋悦, 等. 植物叶绿素含量不同提取方法的比较研究 [J]. 中国农学通报, 2016, 32(27):177−180. DOI: 10.11924/j.issn.1000-6850.casb16010102

    CHANG M Y, WEI X N, WANG Q Y, et al. A comparative study on different extraction methods for plant chlorophyll [J]. Chinese Agricultural Science Bulletin, 2016, 32(27): 177−180. (in Chinese) DOI: 10.11924/j.issn.1000-6850.casb16010102
    [25]
    李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 87–90.
    [26]
    LI H S. Experiental principle and technique for plant physiology and biochemistry[M]. Beijing: Beijng Higher Education Press, 2000.
    [27]
    黄晓纯, 刘昌弘, 张军, 等. ICP-MS测定蔬菜样品中重金属元素的两种微波消解前处理方法 [J]. 岩矿测试, 2013, 32(3):415−419. DOI: 10.3969/j.issn.0254-5357.2013.03.010

    HUANG X C, LIU C H, ZHANG J, et al. Two microwave digestion pretreatment methods for determination of heavy metals in vegetable samples [J]. Rock and Mineral Analysis, 2013, 32(3): 415−419. (in Chinese) DOI: 10.3969/j.issn.0254-5357.2013.03.010
    [28]
    YANG L P, ZHU J, WANG P, et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata [J]. Ecotoxicology and Environmental Safety, 2018, 160: 10−18. DOI: 10.1016/j.ecoenv.2018.05.026
    [29]
    许嘉琳, 鲍子平, 杨居荣, 等. 农作物体内铅、镉、铜的化学形态研究 [J]. 应用生态学报, 1991, 2(3):244−248. DOI: 10.3321/j.issn:1001-9332.1991.03.010

    XU J L, BAO Z P, YANG J R, et al. Chemical form of Pb, Cd and Cu in crop [J]. Chinese Journal of Applied Ecology, 1991, 2(3): 244−248. (in Chinese) DOI: 10.3321/j.issn:1001-9332.1991.03.010
    [30]
    王芳权. 植株中铜锌铁锰微量元素的测定方法研究 [J]. 杭州化工, 2002, 32(1):21−22. DOI: 10.3969/j.issn.1007-2217.2002.01.007

    WANG F Q. Determination of Cu, Zn, Fe and Mn in plants [J]. Hangzhou Chemical Industry, 2002, 32(1): 21−22. (in Chinese) DOI: 10.3969/j.issn.1007-2217.2002.01.007
    [31]
    URUÇ PARLAK K, DEMIREZEN YILMAZ D. Response of antioxidant defences to Zn stress in three duckweed species [J]. Ecotoxicology and Environmental Safety, 2012, 85: 52−58. DOI: 10.1016/j.ecoenv.2012.08.023
    [32]
    李磊. 桉树对外源锌的生理响应和解毒机理研究[D]. 南宁: 广西大学, 2018.

    LI L. Study on phiysiological response and the detoxification mechanism of zinc stress in Eucalyptus[D]. Nanning: Guangxi University, 2018. (in Chinese)
    [33]
    QIU R L, THANGAVEL P, HU P J, et al. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1425−1430.
    [34]
    张春梅. 马缨丹对锌、铜的生理响应和富集特征研究[D]. 雅安: 四川农业大学, 2016.

    ZHANG C M. Study on physiological response and enrichment characteristics of zinc, copper in Lantana camara L. [D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese)
    [35]
    TODESCHINI V, LINGUA G, D’AGOSTINO G, et al. Effects of high zinc concentration on poplar leaves: A morphological and biochemical study [J]. Environmental and Experimental Botany, 2011, 71(1): 50−56. DOI: 10.1016/j.envexpbot.2010.10.018
    [36]
    唐敏, 张欣, 谭欣蕊, 等. 锌在3种乔木中的积累及其亚细胞分布和化学形态 [J]. 应用生态学报, 2021, 32(12):4298−4306.

    TANG M, ZHANG X, TAN X R, et al. Accumulation, subcellular distribution, and chemical forms of zinc in three tree species [J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4298−4306. (in Chinese)
    [37]
    MARICHALI A, DALLALI S, OUERGHEMMI S, et al. Germination, morpho-physiological and biochemical responses of coriander (Coriandrum sativum L. ) to zinc excess [J]. Industrial Crops and Products, 2014, 55: 248−257. DOI: 10.1016/j.indcrop.2014.02.033
    [38]
    TIWARI S, LATA C R. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview [J]. Frontiers in Plant Science, 2018, 9: 452. DOI: 10.3389/fpls.2018.00452
    [39]
    陈怀宇, 李裕红, 韦炜, 等. Pb2+对桐花树幼苗抗氧化酶活性及脂质过氧化的影响 [J]. 泉州师范学院学报, 2006, 24(2):94−99. DOI: 10.3969/j.issn.1009-8224.2006.02.020

    CHEN H Y, LI Y H, WEI W, et al. Effects of lead stress on activities of antioxidant enzymes and lipid peroxidation in Aegiceras corniculatum seedling [J]. Journal of Quanzhou Normal University, 2006, 24(2): 94−99. (in Chinese) DOI: 10.3969/j.issn.1009-8224.2006.02.020
    [40]
    黄运湘, 廖柏寒, 王志坤. 超积累植物的富集特征及耐性机理 [J]. 湖南农业大学学报(自然科学版), 2005, 31(6):693−697.

    HUANG Y X, LIAO B H, WANG Z K. The characteristics of bioaccumulation and tolerance mechanism of hyperaccumulator [J]. Journal of Hunan Agricultural University, 2005, 31(6): 693−697. (in Chinese)
    [41]
    陈柳君, 冯海峰, 朱雪梅, 等. 铜锌复合污染对铜富集植物大聚藻抗氧化酶活性的影响 [J]. 西北植物学报, 2014, 34(10):2056−2062. DOI: 10.7606/j.issn.1000-4025.2014.10.2056

    CHEN L J, FENG H F, ZHU X M, et al. Effect of Cu and Zn compound pollution on antioxidant enzyme activity of Cu-enrichment plant Myriophyllum aquaticum [J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(10): 2056−2062. (in Chinese) DOI: 10.7606/j.issn.1000-4025.2014.10.2056
    [42]
    AHAMMED G J, RUAN Y P, ZHOU J, et al. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato [J]. Chemosphere, 2013, 90(11): 2645−2653. DOI: 10.1016/j.chemosphere.2012.11.041
    [43]
    URUÇ PARLAK K, DEMIREZEN YILMAZ D. Response of antioxidant defences to Zn stress in three duckweed species [J]. Ecotoxicology and Environmental Safety, 2012, 85: 52−58. DOI: 10.1016/j.ecoenv.2012.08.023
    [44]
    LIN W J, XIAO T F, WU Y Y, et al. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils [J]. Chemosphere, 2012, 86(8): 837−842. DOI: 10.1016/j.chemosphere.2011.10.060
    [45]
    OZDENER Y, AYDIN B K. The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket) [J]. Acta Physiologiae Plantarum, 2010, 32(3): 469−476. DOI: 10.1007/s11738-009-0423-z
    [46]
    杨忠臣. 人工湿地植物根系泌氧和分泌物影响污染物去除的机制研究[D]. 济南: 山东大学,

    YANG Z C. Study on the mechanism of radial oxygen loss and root exudates affected pollutant removal in constructed wetlands[D]. Jinan: Shandong University, 2016. (in Chinese)
    [47]
    李晶, 栾亚宁, 孙向阳, 等. 水生植物修复重金属污染水体研究进展 [J]. 世界林业研究, 2015, 28(2):31−35.

    LI J, LUAN Y N, SUN X Y, et al. Research advances in remediation of heavy metal contaminated water bodies by aquatic plants [J]. World Forestry Research, 2015, 28(2): 31−35. (in Chinese)
    [48]
    BRUNE A, URBACH W, DIETZ K J. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance[J]. Plant, Cell & Environment, 1994, 17(2): 153–162.
    [49]
    易诗明. 铅锌胁迫对蓖麻根系形态结构及元素吸收的影响[D]. 长沙: 中南林业科技大学, 2017.

    YI S M. Effect of Lead & Zinc on roots morphology and anatomy absorption of Ricinus communis L. [D]. Changsha: Central South University of Forestry & Technology, 2017. (in Chinese)
    [50]
    吴晓梅, 叶美锋, 吴飞龙, 等. 铜在狐尾藻中的积累及亚细胞分布和化学形态 [J]. 农业环境科学学报, 2024, 43(5):1114−1122. DOI: 10.11654/jaes.2023-0899

    WU X M, YE M F, WU F L, et al. Accumulation, subcellular distribution, and chemical forms of copper in Myriophyllum spicatum L [J]. Journal of Agro-Environment Science, 2024, 43(5): 1114−1122. (in Chinese) DOI: 10.11654/jaes.2023-0899
    [51]
    龙新宪. 东南景天(Sedum alfredii hance)对锌的耐性和超积累机制研究[D]. 杭州: 浙江大学, 2002.

    LONG X X. Mechanisms of zinc tolerance and hyperaccumulation by Sedum Alfredii Hance [D]. Hangzhou: Zhejiang University, 2002. (in Chinese)

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return