• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
HAN L Y, ZHANG G Z, LIU Y, et al. Bioactivities of Honeys from Bees Fed on Different Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(7):857−867 doi: 10.19303/j.issn.1008-0384.2024.07.013
Citation: HAN L Y, ZHANG G Z, LIU Y, et al. Bioactivities of Honeys from Bees Fed on Different Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(7):857−867 doi: 10.19303/j.issn.1008-0384.2024.07.013

Bioactivities of Honeys from Bees Fed on Different Plants

doi: 10.19303/j.issn.1008-0384.2024.07.013
  • Received Date: 2024-02-21
  • Rev Recd Date: 2024-05-11
  • Available Online: 2024-09-19
  • Publish Date: 2024-07-28
  •   Objective  Specialized honeys exhibit strong antioxidant capabilities, antibacterial activities, and medicinal properties derived from plants, presenting significant potential and value for development and utilization. This study aims to conduct a comparative analysis of various specialized honeys within China, with the goal of identifying samples with outstanding biological activities. Ultimately, the research endeavors to provide a scientific basis for the medical and healthcare applications of honey.   Method  Thirty-three honey samples from different regions in China were collected for physicochemical and biological activity analyses. Antioxidant activity was evaluated using the free radical scavenging and total antioxidant capacity tests, and antibacterial capacity assessed by means of agar diffusion and microdilution in broth.  Result  All tested honeys met the national standards on physicochemical properties. Of the 33 specimens, the leucosceptrum honey exhibited the strongest antioxidative activity, the chestnut and agastache honeys performed well, while the fennel honey showed the highest antibacterial effect on Staphylococcus aureus and the Goji honey on Escherichia coli. The antioxidative, but not the antibacterial, capacity of the honeys significantly correlated with the total phenolic content in it.  Conclusion   Not all sweet-tasting honeys are created equal. The nutritional, antioxidant, and antibacterial functions of some samples tested in this study stood out with special marketing and product development potentials. The evaluation protocol presented in this article might be useful in further investigations that might lead to extended utilization of the common food ingredient.
  • loading
  • [1]
    FERREIRA I C F R, AIRES E, BARREIRA J C M, et al. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract [J]. Food Chemistry, 2009, 114(4): 1438−1443. doi: 10.1016/j.foodchem.2008.11.028
    [2]
    DE ALMEIDA-MURADIAN L B, STRAMM K M, HORITA A, et al. Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera [J]. International Journal of Food Science & Technology, 2013, 48(8): 1698−1706.
    [3]
    GOMES S, DIAS L G, MOREIRA L L, et al. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal [J]. Food and Chemical Toxicology, 2010, 48(2): 544−548. doi: 10.1016/j.fct.2009.11.029
    [4]
    SULAIMAN N H I, SARBON N M. Physicochemical, antioxidant and antimicrobial properties of selected Malaysian honey as treated at different temperature: A comparative study [J]. Journal of Apicultural Research, 2022, 61(4): 567−575. doi: 10.1080/00218839.2020.1846295
    [5]
    FARAZ A, FERNANDO W B, WILLIAMS M, et al. Effects of different processing methods on the antioxidant and antimicrobial properties of honey: A review [J]. International Journal of Food Science & Technology, 2023, 58(7): 3489−3501.
    [6]
    ZAWAWI N, CHONG P J, MOHD TOM N N, et al. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types [J]. Molecules, 2021, 26(15): 4399. doi: 10.3390/molecules26154399
    [7]
    HABIB H M, AL MEQBALI F T, KAMAL H, et al. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions [J]. Food Chemistry, 2014, 153: 28−34. doi: 10.1016/j.foodchem.2013.12.044
    [8]
    NGUYEN H T L, PANYOYAI N, PARAMITA V D, et al. Physicochemical and viscoelastic properties of honey from medicinal plants [J]. Food Chemistry, 2018, 241: 143−149. doi: 10.1016/j.foodchem.2017.08.070
    [9]
    WU F H, ZHAO H A, SUN J, et al. ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius [J]. Food Chemistry, 2021, 354: 129568. doi: 10.1016/j.foodchem.2021.129568
    [10]
    MAVRIC E, WITTMANN S, BARTH G, et al. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand [J]. Molecular Nutrition & Food Research, 2008, 52(4): 483−489.
    [11]
    SINHA S, SEHGAL A, RAY S, et al. Benefits of manuka honey in the management of infectious diseases: Recent advances and prospects [J]. Mini Reviews in Medicinal Chemistry, 2023, 23(20): 1928−1941. doi: 10.2174/1389557523666230605120717
    [12]
    WANG K, WAN Z R, OU A Q, et al. Monofloral honey from a medical plant, Prunella Vulgaris, protected against dextran sulfate sodium-induced ulcerative colitis via modulating gut microbial populations in rats [J]. Food & Function, 2019, 10(7): 3828−3838.
    [13]
    SUN L P, SHI F F, ZHANG W W, et al. Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L. ) honey extract [J]. Foods, 2020, 9(8): 1039. doi: 10.3390/foods9081039
    [14]
    ZHAO L W, REN C J, XUE X F, et al. Safflomin A: A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey [J]. Food Chemistry, 2022, 366: 130584. doi: 10.1016/j.foodchem.2021.130584
    [15]
    ENGWA G A, ENNWEKEGWA F N, NKEH-CHUNGAG B N. Free radicals, oxidative stress-related diseases and antioxidant supplementation [J]. Alternative Therapies in Health and Medicine, 2022, 28(1): 114−128.
    [16]
    DRÖGE W. Free radicals in the physiological control of cell function [J]. Physiological Reviews, 2002, 82(1): 47−95. doi: 10.1152/physrev.00018.2001
    [17]
    GULUMBE B H, SAHAL M R, ABDULRAHIM A, et al. Antibiotic resistance and the COVID-19 pandemic: A dual crisis with complex challenges in LMICs [J]. Health Science Reports, 2023, 6(9): e1566. doi: 10.1002/hsr2.1566
    [18]
    ETERAF-OSKOUEI T, NAJAFI M. Traditional and modern uses of natural honey in human diseases: A review [J]. Iranian Journal of Basic Medical Sciences, 2013, 16(6): 731−742.
    [19]
    ISRAILI Z H. Antimicrobial properties of honey [J]. American Journal of Therapeutics, 2014, 21(4): 304−323. doi: 10.1097/MJT.0b013e318293b09b
    [20]
    DENG J L, LIU R, LU Q, et al. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey [J]. Food Chemistry, 2018, 252: 243−249. doi: 10.1016/j.foodchem.2018.01.115
    [21]
    KWAKMAN P H S, VAN DEN AKKER J P C, GÜÇLÜ A, et al. Medical-grade honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization [J]. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2008, 46(11): 1677−1682. doi: 10.1086/587892
    [22]
    JENKINS R E, COOPER R. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin [J]. The Journal of Antimicrobial Chemotherapy, 2012, 67(6): 1405−1407. doi: 10.1093/jac/dks071
    [23]
    GAO R R, HU Y T, DAN Y, et al. Chinese herbal medicine resources: Where we stand [J]. Chinese Herbal Medicines, 2020, 12(1): 3−13. doi: 10.1016/j.chmed.2019.08.004
    [24]
    WILCZYŃSKA A. Effect of filtration on colour, antioxidant activity and total phenolics of honey [J]. LWT - Food Science and Technology, 2014, 57(2): 767−774. doi: 10.1016/j.lwt.2014.01.034
    [25]
    BUENO-COSTA F M, ZAMBIAZI R C, BOHMER B W, et al. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil [J]. LWT, 2016, 65: 333−340. doi: 10.1016/j.lwt.2015.08.018
    [26]
    GUO N N, ZHAO L W, ZHAO Y Z, et al. Comparison of the chemical composition and biological activity of mature and immature honey: An HPLC/QTOF/MS-based metabolomic approach [J]. Journal of Agricultural and Food Chemistry, 2020, 68(13): 4062−4071. doi: 10.1021/acs.jafc.9b07604
    [27]
    JAHAN N, ISLAM M A, ALAM F, et al. Prolonged heating of honey increases its antioxidant potential but decreases its antimicrobial activity [J]. African Journal of Traditional, Complementary and Alternative Medicines, 2015, 12(4): 134. doi: 10.21010/ajtcam.v12i4.20
    [28]
    MOHAMMED M E A. Factors affecting the physicochemical properties and chemical composition of bee’s honey [J]. Food Reviews International, 2022, 38(6): 1330−1341. doi: 10.1080/87559129.2020.1810701
    [29]
    BERTONCELJ J, DOBERŠEK U, JAMNIK M, et al. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey [J]. Food Chemistry, 2007, 105(2): 822−828. doi: 10.1016/j.foodchem.2007.01.060
    [30]
    KAYGUSUZ H, TEZCAN F, BEDIA ERIM F, et al. Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis [J]. LWT - Food Science and Technology, 2016, 68: 273−279. doi: 10.1016/j.lwt.2015.12.005
    [31]
    FERRARIS R P, DIAMOND J. Regulation of intestinal sugar transport [J]. Physiological Reviews, 1997, 77(1): 257−302. doi: 10.1152/physrev.1997.77.1.257
    [32]
    ZAREI M, FAZLARA A, TULABIFARD N. Effect of thermal treatment on physicochemical and antioxidant properties of honey [J]. Heliyon, 2019, 5(6): e01894. doi: 10.1016/j.heliyon.2019.e01894
    [33]
    ZHANG Y Z, SI J J, LI S S, et al. Chemical analyses and antimicrobial activity of nine kinds of unifloral Chinese honeys compared to manuka honey (12+ and 20+) [J]. Molecules, 2021, 26(9): 2778. doi: 10.3390/molecules26092778
    [34]
    FLANJAK I, KENJERIĆ D, BUBALO D, et al. Characterization of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics [J]. European Food Research and Technology, 2016, 242(4): 467−475. doi: 10.1007/s00217-015-2557-0
    [35]
    GHELDOF N, WANG X H, ENGESETH N J. Identification and quantification of antioxidant components of honeys from various floral sources [J]. Journal of Agricultural and Food Chemistry, 2002, 50(21): 5870−5877. doi: 10.1021/jf0256135
    [36]
    KISHORE R K, HALIM A S, NURUL SYAZANA M S, et al. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources [J]. Nutrition Research, 2011, 31(4): 322−325. doi: 10.1016/j.nutres.2011.03.001
    [37]
    GOŚLIŃSKI M, NOWAK D, KŁĘBUKOWSKA L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys [J]. Journal of Food Science and Technology, 2020, 57(4): 1269−1277. doi: 10.1007/s13197-019-04159-w
    [38]
    ANTHIMIDOU E, MOSSIALOS D. Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey [J]. Journal of Medicinal Food, 2013, 16(1): 42−47. doi: 10.1089/jmf.2012.0042
    [39]
    HOSSAIN M L, LIM L Y, HAMMER K, et al. A review of commonly used methodologies for assessing the antibacterial activity of honey and honey products [J]. Antibiotics, 2022, 11(7): 975. doi: 10.3390/antibiotics11070975
    [40]
    BODÓ A, RADVÁNYI L, KŐSZEGI T, et al. Quality evaluation of light- and dark-colored Hungarian honeys, focusing on botanical origin, antioxidant capacity and mineral content [J]. Molecules, 2021, 26(9): 2825. doi: 10.3390/molecules26092825
    [41]
    GÜL A, PEHLIVAN T. Antioxidant activities of some monofloral honey types produced across Turkey [J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1056−1065. doi: 10.1016/j.sjbs.2018.02.011
    [42]
    KUŚ P M, SZWEDA P, JERKOVIĆ I, et al. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters [J]. Letters in Applied Microbiology, 2016, 62(3): 269−276. doi: 10.1111/lam.12541
    [43]
    ESCUREDO O, SILVA L R, VALENTÃO P, et al. Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity [J]. Food Chemistry, 2012, 130(3): 671−678. doi: 10.1016/j.foodchem.2011.07.107
    [44]
    KRETAVIČIUS J, KURTINAITIENĖ B, RAČYS J, et al. Inactivation of glucose oxidase during heat-treatment de-crystallization of honey [J]. Zemdirbyste Agriculture, 2010, 97(4): 115−122.
    [45]
    WAHDAN H A. Causes of the antimicrobial activity of honey [J]. Infection, 1998, 26(1): 26−31. doi: 10.1007/BF02768748
    [46]
    STOJKOVIĆ D, PETROVIĆ J, SOKOVIĆ M, et al. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems [J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3205−3208. doi: 10.1002/jsfa.6156
    [47]
    PELÁEZ-ACERO A, COBOS-VELASCO J E, GONZÁLEZ-LEMUS U, et al. Bioactive compounds and antibacterial activities in crystallized honey liquefied with ultrasound [J]. Ultrasonics Sonochemistry, 2021, 76: 105619. doi: 10.1016/j.ultsonch.2021.105619
    [48]
    FYFE L, OKORO P, PATERSON E, et al. Compositional analysis of Scottish honeys with antimicrobial activity against antibiotic-resistant bacteria reveals novel antimicrobial components [J]. LWT - Food Science and Technology, 2017, 79: 52−59. doi: 10.1016/j.lwt.2017.01.023
    [49]
    ANAND S, DEIGHTON M, LIVANOS G, et al. Antimicrobial activity of Agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys [J]. Frontiers in Microbiology, 2019, 10: 263. doi: 10.3389/fmicb.2019.00263
    [50]
    JANDRIĆ Z, FREW R D, FERNANDEZ-CEDI L N, et al. An investigative study on discrimination of honey of various floral and geographical origins using UPLC-QToF MS and multivariate data analysis [J]. Food Control, 2017, 72: 189−197. doi: 10.1016/j.foodcont.2015.10.010
    [51]
    BASSON N J, GROBLER S R. Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms [J]. BMC Complementary and Alternative Medicine, 2008, 8: 41. doi: 10.1186/1472-6882-8-41
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(7)

    Article Metrics

    Article views (37) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return